TABLE OF CONTENTS

Part 1:	Introdu			
	1.1	Descript	tion	2
	1.2		Considerations	
	1.3	Before \	You Begin	4
	-			
				5
-	2.1	Mountin	Ig	5
	2.2		nel Connections	
	2.3		al Installation	
		2.3.1 P	Power Connections	8
			hermocouple - Input Connection	
		2.3.3 T	wo / Three / Four Wire RTD-Hookups	10
		2.3.4 P	Process Current - Wiring Hookup	11
		2.3.5 P	Process Voltage - Wiring Hookup	11
		2.3.6 V	Viring Outputs - Wiring Hookup	12
Dart 2.	Onora	lion: Cor	nfiguration Mode	11
	3.1		tion	
	5.1	T	urning your Instrument On for the First Time	14
			Buttons Functions in Configuration Mode	
	3.2		onfiguration	15
	J.Z		D Number	
			Setpoints	
			Configuration Menu	
			nput Type Menu	10
			nput Type (Thermocouple)	10
			nput Type (RTD)	
			nput Type (Process)	
			Reading Configuration Menu	
		3.2.6 A	Alarm 1 Menu	21
		3.2.7 A	Analog Output (Retransmission) Menu	20
		3.2.8 A	Alarm 2 Menu	22
		3.2.9 L	.oop Break Time Menu / Field Calibration	22
			Dutput 1 Menu	
			Dutput 2 Menu	
		3212	Ramp and Soak Menu	46
			D Code Menu	
			Communication (Options) Menu	
		3.2.15 D	Display Color Selection Menu	56
Part 4:	Specif	ications		59
Part 5	Factor	v Preset	Values	62
		-		
CE APF	PROVA	L INFOR		65

1-800-TIP-TEMP www.tiptemp.com

LIST OF FIGURES:

Figure 2.1	Mounting	5
Figure 2.2	Rear Panel Power and Output Connector Labels	7
Figure 2.3	Rear Panel Input Connector Labels	7
Figure 2.4	Main Power Connections	
Figure 2.5	Inside Cover Rear View	
Figure 2.6	Thermocouple Wiring Hookup	9
Figure 2.7	Two/Three/Four-wire RTD	
	a) RTD-1000 ohm and 500 ohm Wiring Hookup	10
	b) RTD-100 ohm Wiring Hookup	10
Figure 2.8	Process Current Wiring Hookup	
	(Internal and External Excitation)	11
Figure 2.9	Process Voltage Wiring Hookup	
	a) Without Sensor Excitation	
	b) With Sensor Excitation	11
Figure 2.10	Output Connections:	
	a) Mechanical Relay and SSR Outputs – Wiring Hook up	12
	b) Pulse and Analog Outputs – Wiring Hook up	12
Figure 2.11	Communication Output:	
	a) RS-232 Output – Wiring Hook up	12
	b) RS-485 Output – Wiring Hook up	12
Figure 2.12	Excitation Output	13
Figure 2.13	Snubber Circuits Wiring Hookup	13
Figure 3.1	Flow Chart for ID and Setpoints	
Figure 3.2	Flow Chart for Configuration Menu	
Figure 3.3	Flow Chart for Input Type Menu	
Figure 3.4	Flow Chart for Reading Configuration	21
Figure 3.5	Flow Chart for Alarm 1	25
Figure 3.6	Flow Chart for Analog Output (Retransmission)	29
Figure 3.7	Flow Chart for Alarm 2	32
Figure 3.8	Flow Chart for Loop Break Time / Field Calibration	
Figure 3.9	Flow Chart for Output 1	
Figure 3.10	Flow Chart for Output 2	
Figure 3.11	Flow Chart for Ramp and Soak	
Figure 3.12	Flow Chart for ID Code	
Figure 3.13	Flow Chart for Communication Option	
Figure 3.14	Flow Chart for Display Color Selection	56

LIST OF TABLES:

.6
.7
.9
4
24
51
62

NOTES, WARNINGS and CAUTIONS

Information that is especially important to note is identified by following labels:

- NOTE
- WARNING or CAUTION
- IMPORTANT
- TIP

NOTE: Provides you with information that is important to successfully setup and use the Programmable Digital Meter.

CAUTION or WARNING: Tells you about the risk of electrical shock.

CAUTION, WARNING or IMPORTANT: Tells you of circumstances or practices that can effect the instrument's functionality and must refer to accompanying documents.

TIP: Provides you helpful hints.

PART 1 INTRODUCTION 1.1 Description

This device can be purchased as monitor (read process value only) or as a controller.

- The iLD Big Display controller offers unparalleled flexibility in process measurement. Each unit allows the user to select the input type, from 10 thermocouple types (J, K, T, E, R, S, B, C, N and J DIN), Pt RTDs (100, 500 or 1000 Ω, with either 385 or 392 curve), DC voltage, or DC current. The voltage/current inputs are fully scalable to virtually all engineering units, with selectable decimal point, perfect for use with pressure, flow or other process input.
- The temperature control can be achieved by using on/off or PID heat/cool control strategy. Control can be optimized with an auto tune feature. The instrument offers a ramp to setpoint with timed soak period before switching off the output.
- The iLD Big Display device features a large, three color programmable display with capability to change a color every time the Alarm is triggered. The standard features include dual outputs with relay, SSR, dc pulse, analog voltage or current. Options include programmable RS-232 or RS-485 serial communication and excitation. Analog Output is fully scalable and may be configured as a proportional controller or retransmission to follow your display. Universal power supply accepts 100 to 240 Vac.

1.2 Safety Considerations

This device is marked with the international caution symbol. It is important to read this manual before installing or commissioning this device as it contains important information relating to Safety and EMC (Electromagnetic Compatibility).

This instrument is protected in accordance with Class I of EN 61010 (110/240 AC power connections). Installation of this instrument should be done by qualified personnel. In order to ensure safe operation, the following instructions should be followed.

This instrument has no power-on switch. An external switch or circuitbreaker shall be included in the building installation as a disconnecting device. It shall be marked to indicate this function, and it shall be in close proximity to the equipment within easy reach of the operator. The switch or circuit-breaker shall meet the relevant requirements of IEC 947–1 and IEC 947-3 (International Electrotechnical Commission). The switch shall not be incorporated in the main supply cord.

Furthermore, to provide protection against excessive energy being drawn from the main supply in case of a fault in the equipment, an overcurrent protection device shall be installed.

• Do not exceed voltage rating on the label located on the top of the instrument housing.

- Always disconnect power before changing signal and power connections.
- Do not use this instrument on a work bench without its case for safety reasons.
- Do not operate this instrument in flammable or explosive atmospheres.
- Do not expose this instrument to rain or moisture.
- Unit mounting should allow for adequate ventilation to ensure instrument does not exceed operating temperature rating.
- Use electrical wires with adequate size to handle mechanical strain and power requirements. Install without exposing bare wire outside the connector to minimize electrical shock hazards.

EMC Considerations

- Whenever EMC is an issue, always use shielded cables.
- Never run signal and power wires in the same conduit.
- Use signal wire connections with twisted-pair cables.
- Install Ferrite Bead(s) on signal wires close to the instrument if EMC problems persist.

Failure to follow all instructions and warnings may result in injury!

1.3 Before You Begin

Inspecting Your Shipment:

Remove the packing slip and verify that you have received everything listed. Inspect the container and equipment for signs of damage as soon as you receive the shipment. Note any evidence of rough handling in transit. Immediately report any damage to the shipping agent. The carrier will not honor damage claims unless all shipping material is saved for inspection. After examining and removing the contents, save the packing material and carton in the event reshipment is necessary.

Customer Service:

If you need assistance, please call the nearest Customer Service Department, listed in this manual.

Manuals, Software:

The latest Operation and Communication Manual as well as free configuration software and ActiveX controls are available from the website listed in this manual or on the CD-ROM enclosed with your shipment.

For first-time users: Refer to the QuickStart Manual for basic operation and set-up instructions.

If you have the Serial Communications/Ethernet Option you can easily configure the controller on your computer or on-line.

To Disable Outputs:

Standby Mode is useful during setup of the instrument or when maintenance of the system is necessary. When the instrument is in standby, it remains in the ready condition but all outputs are disabled. This allows the system to remain powered and ready to go.

When the instrument is in "RUN" Mode, push O twice to disable all outputs and alarms. It is now in "STANDBY" Mode. Push O once more to resume "RUN" Mode.

PUSH O TWICE to disable the system during an **EMERGENCY**.

To Reset the Meter:

When the controller is in the "MENU" Mode, **push** • once to direct controller one step backward of the top menu item.

Push ♥ twice to reset controller, prior to resuming "Run" Mode except after "Alarms", that will go to the "Run" Mode without resetting the controller.

PART 2 SETUP 2.1 Mounting

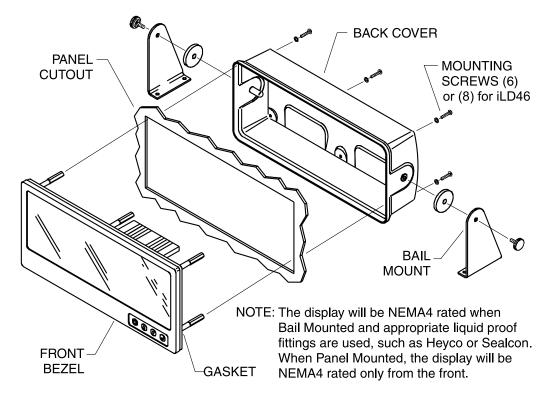


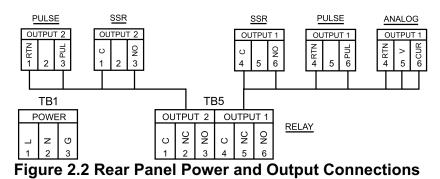
Figure 2.1 Mounting

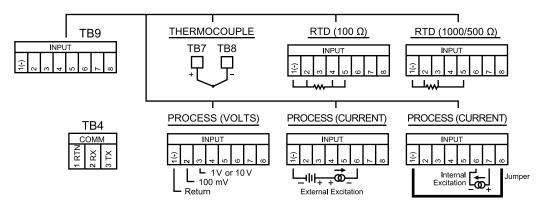
Mounting iLD Big Display Through Panel:

- 1. Using the panel cutout diagram shown in your Quick Start Manual, cut an opening in the panel.
- 2. Remove six (or eight) screws at the back of iLD Big Display to remove back cover.
- 3. Insert the unit into the opening from the front of the panel so the gasket seals between the bezel and the front of the panel.
- 4. Pass all wiring through customer drilled holes in back cover and connect wiring to terminal blocks.
- 5. Align back cover to iLD Big Display and reinstall screws.

Mounting iLD Big Display on Bail:

- 1. Remove six (or eight) screws at the back of iLD Big Display to remove back cover.
- 2. Pass all wiring through customer drilled holes in back cover and connect wiring to terminal blocks.
- 3. Align back cover to iLD Big Display and reinstall screws.
- 4. Mark the location of mounting screws on the flat surface.
- 5. Be sure to leave enough room around the bail to allow for removal and rotation of the display.
- 6. The display can be rotated for the best viewing angle.


Table 2.1 Front Panel Annunciators


1	Output 1/Setpoint 1/ Alarm 1 indicator
2	Output 2/Setpoint 2/ Alarm 2 indicator
°C	°C unit indicator
°F	°F unit indicator
۲	Changes display to Configuration Mode
	and advances through menu items*
0	Used in Program Mode and Peak Recall*
0	Used in Program Mode and Valley Recall*
0	Accesses submenus in Configuration Mode
	and stores selected values*

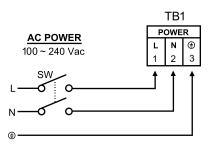
* See Part 3 Operation: Configuration Mode

2.2 Rear Panel Connections

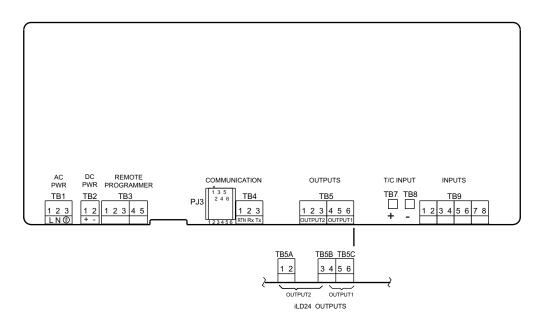
The rear panel connections are shown in Figures 2.2 and 2.3.

Figure 2.3 Rear Panel Input Connections

Table 2.2 Rear Panel Connector


POWER	AC Power Connector: All models
INPUT	Input Connector: TB7 & TB8 for TC models
	TB9 for PR (Process) & RTD models
OUTPUT 1	Based on one of the following models:
	Relay SPDT
	Solid State Relay
	Pulse
	Analog Output (Voltage and Current)
OUTPUT 2	Based on one of the following models:
	Relay SPDT
	Solid State Relay
	Pulse
OPTION	Based on one of the following models:
	RS-232C or RS-485

2.3 Electrical Installation


2.3.1 Power Connections

Caution: Do not connect power to your device until you have completed all input and output connections. Failure to do so may result in injury!

Connect the main power connections as shown in Figure 2.4.

Figure 2.5 Inside Cover Rear View

2.3.2 Thermocouple

The figure below shows the wiring hookup for any thermocouple type. For example, for Type K hookup, connect the yellow wire to the TB7(+) terminal and the red wire to the TB8(-) terminal.

When configuring your controller, select Thermocouple and Thermocouple Type in the Input Type menu (see Part 3).

Figure 2.6 Thermocouple Wiring Hookup

TYPE	Input Co	nnector	Jacket (externa	l insulation)				
	Terminal 8 (-)	Terminal 7 (+)	Extension	Grade				
J	Red	White	dark-Brown	Black				
K	Red	Yellow	dark-Brown	Yellow				
Т	Red	Blue	dark-Brown	Blue				
E	Red	Purple	dark-Brown	Purple				
N	Red	Orange	dark-Brown	Brown				
R	Red	Black	-	Green				
S	Red	Black	-	Green				
В	Red	Gray	_	Black				

Table 2.3 TC Wire Color Chart

2.3.3 Two/Three/Four-Wire RTD

The figures below show the input connections and input connector jumpers (shown in bold lines) required to hookup a 2-, 3- or 4-wire RTD.

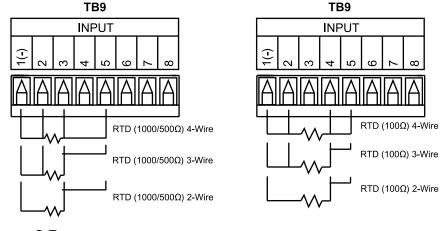


Figure 2.7 a) RTD-1000 ohm and 500 ohm Wiring Hookup

b) RTD-100 ohm Wiring Hookup

The **two-wire** connection is simplest method, but does not compensate for lead-wire temperature change and often requires calibration to cancel lead-wire resistance offset.

The **three-wire** connection works best with RTD leads closely equal in resistance. The device measures the RTD, plus upper and lower lead drop voltage and the subtracts twice the measured drop in the lower supply current lead producing excellent lead-resistance cancellation for balanced measurements.

The **four-wire** RTD hookup is applicable to unbalanced lead resistance and enables the device to measure and subtract the lead voltage, which produces the best lead-resistance cancellation.

When configuring your controller, select RTD type and RTD value in the Input Type menu (see Part 3).

If the input wires of the meter get disconnected or broken, it will display CPN "Input (+) Open" message except in case of 500/1000 Ω 2-wire RTD. In this case the display shows CPN "Input (-) Open" message. For safety purpose you may want to set up your alarm to be triggered when input is open. See Alarm 1 & 2 chapters for details.

2.3.4 Process Current

The figure below shows the wiring hookup for Process Current 0 - 20 mA.

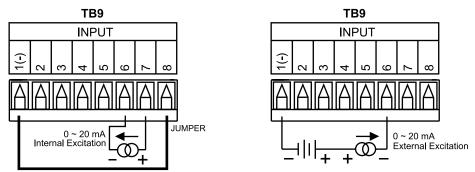
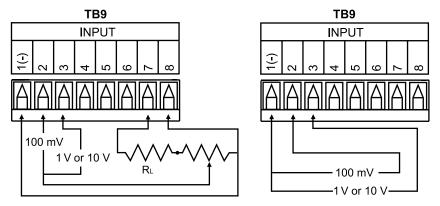
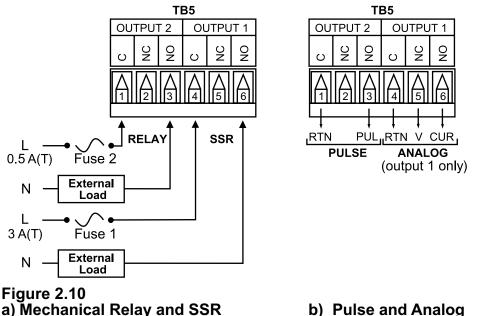



Figure 2.8 Process Current Wiring Hookup (Internal and External Excitation)

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).

2.3.5 Process Voltage

The figure below shows the wiring hookup for Process Voltage 0 – 100 mV, 0 - 1 V, 0 - 10 V.


Figure 2.9 a) Process Voltage Wiring Hookup b) Process Voltage Wiring Hookup with Sensor Excitation without Sensor Excitation

RL - Voltage limiting resistor, which allows conversion of the 24 Vdc internal excitation voltage to the appropriate process input value. For instance: if the potentiometer value is equal to 10 k Ω , the minimum RL is 14 k Ω for 10 V process input.

When configuring your instrument, select Process Type in the Input Type Menu (see Part 3).

2.3.6 Wiring Outputs

This meter has two, factory installed, outputs. The SPDT Mechanical Relay, SPST Solid State Relay, Pulse and Analog Output Connection are shown below.

Outputs Wiring Hookup

b) Pulse and Analog Outputs Wiring Hookup

This device may have a programmable communication output. The RS-232 and RS-485 Output Connection are shown below.

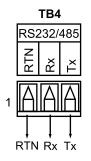
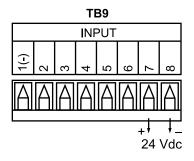
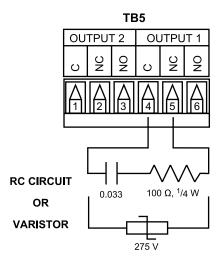



Figure 2.11 a) RS-232 Output Wiring Hookup

b) RS-485 Output Wiring Hookup

This device may also have an excitation output.

Figure 2.12 Excitation Output


Note 🖙

Excitation is not available if communication option is installed.

This device has snubber circuits designed to protect the contacts of the mechanical relays when it switches to inductive loads (i.e. solenoids, relays). These snubbers are internally connected between the Common (C) and Normally Open (NO) relay contacts of Output 1 and Output 2.

Note 🖙

If you have an inductive load connected between Common (C) and Normally Closed (NC) contacts of the mechanical relays and you want to protect them from the rush current during the switching period, you have to connect an external snubber circuit between Common (C) and Normally Closed (NC) contacts as indicated in the figure below.

Figure 2.13 Snubber Circuits Wiring Hookup

PART 3 OPERATION: Configuration Mode

3.1 Introduction

The instrument has two different modes of operation. The first, Run Mode, is used to display values for the Process Variable, and to display or clear Peak and Valley values. The other mode, Menu Configuration Mode, is used to navigate through the menu options and configure the controller. Part 3 of this manual will explain the Menu Configuration Mode. For your instrument to operate properly, the user must first "program" or configure the menu options.

Turning your Controller On for the First Time

The device becomes active as soon as it is connected to a power source. It has no On or Off switch. The device at first momentarily shows the software version number, followed by reset RSE, and then proceeds to the Run Mode.

Table 3.1 Button Function in Configuration Mode

	 To enter the Menu, the user must first press button.
\odot	• Use this button to advance/navigate to the next menu item. The user can
MENU	navigate through all the top level menus by pressing .
	• While a parameter is being modified, press I to escape without saving
	the parameter.
	 Press the up O button to scroll through "flashing" selections. When a
	numerical value is displayed press this key to increase value of a
(UP)	 parameter that is currently being modified. Holding the O button down for approximately 3 seconds will speed up the
(UP)	rate at which the set point value increments.
	 In the Run Mode press O causes the display to flash the PEAK value –
	press again to return to the Run Mode.
	 Press the down O button to go back to a previous Top Level Menu item.
	 Press this button twice to reset the controller to the Run Mode.
	 When a numerical value is flashing (except set point value) press to
	scroll digits from left to right allowing the user to select the desired digit to
0	modify.
(DOWN)	 When a setpoint value is displayed press It to decrease value of a
	setpoint that is currently being modified. Holding the O button down for
	approximately 3 seconds will speed up the rate at which the setpoint value is decremented.
	 In the Run Mode press C causes the display to flash the VALLEY value –
	press again to return to the Run Mode.
	 Press the enter O button to access the submenus from a Top Level
	Menu item.
•	 Press I to store a submenu selection or after entering a value — the
ENTER	display will flash a Stad message to confirm your selection.
	 To reset flashing Peak or Valley press ^O.
	 In the Run Mode, press I twice to enable Standby Mode with
	flashing SEB9.

Reset: Except for Alarms, modifying any settings of the menu configuration will reset the instrument prior to resuming Run Mode.

3.2 Menu Configuration

It is recommended that you put the controller in the Standby Mode for any configuration change other than Setpoints & Alarms.

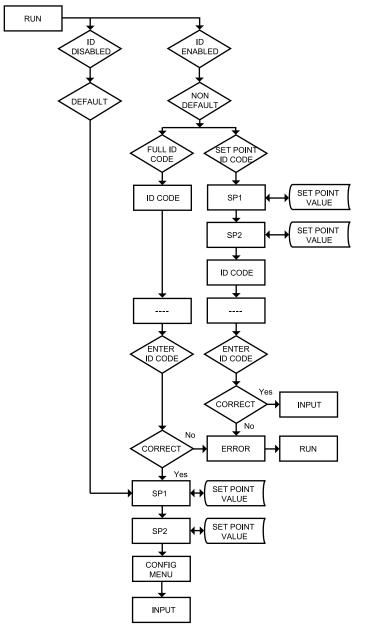


Figure 3.1 Flow Chart for ID and Setpoints

3.2.1 ID Number

SEE ID MENU SELECTION IN CONFIGURATION SECTION FOR ENABLE/DISABLE OR CHANGE ID CODE.

If ID Code is **Disabled** or set as **Default** (0000) the menu will skip ID step to Setpoint Menu.

If ID Code is set to **Full** Security Level and user attempts to enter the Main Menu, they will be prompted for an ID Code.

If ID Code is set to **Setpoint/ID** Security Level and user attempts to enter the Configuration Menu, they will be prompted for an ID Code.

ENTERING YOUR NON-DEFAULT FULL SECURITY ID NUMBER.

Press **1**) Display shows **1**.

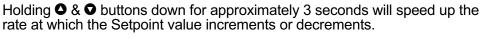
- Press 2 2) Display advances to
- Press & 3) Press to increase digit 0-9. Press to activate next digit (flashing). Continue to use and to enter your 4-digit ID code.
- Press 4) If the correct ID code is entered, the menu will advance to the Setpoint 1 Menu, otherwise an error message CROwill be displayed and the instrument will return to the Run Mode.

Note Is To change ID Code, see ID Menu in the Configuration section.

ENTERING YOUR NON-DEFAULT SETPOINT/ID SECURITY ID NUMBER.

- Press 2 5) Display shows 5 Setpoint 1 Menu.
- Press 2 6) Display shows See Setpoint 2 Menu.
- Press 🕗
- 7) Display shows III ID Code Menu.
- Press **O** & **O 9**) Use **O** and **O** to change your ID Code. Press **O 10**) If correct ID Code is entered, the disp
 - **10)** If correct ID Code is entered, the display will advance to the **THPE** Input Menu, otherwise the error message **ERRO** will be displayed and the controller will return to the Run Mode.
- Note 🖙

To prevent unauthorized tampering with the setup parameters, the instrument provides protection by requiring the user to enter the ID Code before allowing access to subsequent menus. If the ID Code entered does not match the ID Code stored, the controller responds with an error message and access to subsequent menus will be denied.


Use numbers that are easy for you to remember. If the ID Code is forgotten or lost, call customer service with your serial number to access and reset the default to **0000**.

3.2.2 Set Points

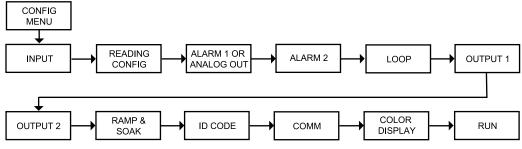
SETPOINT 1:

- Press **2** 1) Press **2**, if necessary until **5** prompt appears.
- Press 2 2) Display shows previous value of "Setpoint 1".
- Press & 3) Press and to increase or decrease Setpoint 1 respectively.

Note 🖙

Press O & O Press O S Display shows SERd stored message momentarily and then advances to SP2 only, if a change was made, otherwise press O to advance to SP2 Setpoint 2 Menu.

SETPOINT 2:


- Press **O 6**) Display shows previous value of "Setpoint 2".
- Press & 7) Press and to increase or decrease Setpoint 2 respectively.

Holding • & • buttons down for approximately 3 seconds will speed up the rate at which the setpoint value increments or decrements.

Press O
 8) Display shows 5ERO stored message momentarily and then advances to CNFC only, if a change was made, otherwise press
 O to advance to CNFC Configuration Menu.

3.2.3 Configuration Menu

Figure 3.2 Flow Chart for Configuration Menu

Enter Configuration Menu:

- Press **1**) Press **9**, if necessary, until **CNFG** prompt appear.
- Press 2 2) Display advances to THPE Input Menu.
- Press **(2)** 3) Pressing and releasing **(2)** to scroll through all available menus of Configuration section.

3.2.4 Input Type Menu

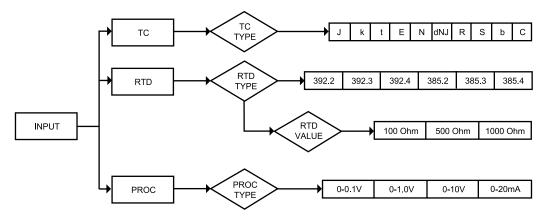


Figure 3.3 Flow Chart for Input Type Menu

Input Type (Thermocouple)

ENTER INPUT TYPE MENU:

- Press 🕗 1) Press ②, if necessary, until CNFC prompt appears.
- Press 🖸
- 2) Display advances to HAPE Input Menu.
 3) Display flashes E.c., RE d or PROC (Thermocouple, RTD or Press 🖸 Process). If the displayed input type is E.c., press 2 to skip to step 6 (E.c stops flashing).

THERMOCOUPLE SUBMENU:

- 4) Scroll through the available selection to **E.c** (flashing). Press O
- Press 🖸 5) Display shows 5ERd stored message momentarily and then E.c (not flashing).
- Press 🖸 6) Display flashes previous thermocouple type selection. i.e. (see below for types).
- Press **O** 7) Scroll through the available thermocouple types to the selection of your choice.
- 8) Display shows 55 Rd stored message momentarily and then advances to the Rd Reading Configuration Menu. Press 🖸

Use the Input Type (Thermocouple) (RTD) or (Process) and verify your Note 🖙 Electrical Installation (see Section 2.3).

Thermocouple Types:	J,	K,	Τ,	Ε,	Ν,	DIN J,	R,	S,	В,	С
Display:	ł	ĸ	E	ε	Ы	9117	R	S	Ь	C

Input Type (RTD)

ENTER INPUT TYPE MENU:

- Press 🔊 1) Press ②, if necessary, until CNFC prompt appears.
- Press 🖸
- 2) Display advances to THPE Input Menu.
 3) Display flashes E.c., RE d or PROC (Thermocouple, RTD or Press 🖸 Process). If the displayed input type is REd, press O to skip to step 6 (REd stops flashing).

RTD SUBMENU:

- 4) Scroll through the available selection to REE (flashing). Press O
- Press 🖸 5) Display shows 5ERd stored message momentarily and then REd (not flashing).
- Press 🖸 6) Display flashes previous RTD type selection i.e. 392.2 (see below for RTD types selection).
- 7) Scroll through the available RTD types to the selection of Press **O** vour choice.
- 8) Display shows SERd stored message momentarily and then Press 🖸 advances to REd RTD value.

Two, Three or Four-wire **RTD Types:** 392 385 <u>392.2. 392.3. 392.4. 385.2. 385.3. 385.4</u> Display:

Note Last digit indicates: 2-, 3- or 4-wire input.

RTD VALUE SUBMENU:

Press 🖸	9) Display flashes previous RTD value selection i.e. 100 . (see below for RTD value selection).							
Press O	10) Scroll	10) Scroll through the available RTD values to the selection of your choice.						
Press 🖸	11) Display shows SERd stored message momentarily and then advances to RdC Reading Configuration Menu.							
RTD Values: Display:	100 ohm 700 -	500 ohm 500 -	1000 ohm 1000					

Input Type (Process)

ENTER INPUT TYPE MENU:

- Press **O** 1) Press **O**, if necessary, until **CNFC** prompt appears.
- Press 2 2) Display advances to HPE Input Menu.

Press O
 3) Display flashes E.c., REd or PROE (Thermocouple, RTD or Process). If the displayed input type is PROE, press O to skip to step 6 (PROE stops flashing).

PROCESS SUBMENU:

Press 🗅	4) Scroll through the available selection to PROC (flashing).
_	

- Press •
 5) Display shows 5 t R d stored message momentarily and then

 PROC (not flashing).
- Press O
 6) Display flashes previous Process type selection. i.e. O 10 (see below for Process types selection).
- Press **() ()** Scroll through the available Process types to the selection of your choice.
- Press **28**) Display shows **5** to red message and then advances to
Red Reading Configuration Menu.

Process Types:	100 mV	1 V		0 – 20 mA
Display:	0-0.1	0 - 1.0	0 - 10	0-50

For 4-20 mA Input select 0-20 mA then adjust the Input/Reading accordingly. To adjust 4-20 mA input, see example under INPUT/READING submenu. The factory preset value is 4-20 mA.

Note 🖙

3.2.5 Reading Configuration

It is recommended that you put the controller in the Standby Mode for any configuration change other than Setpoints & Alarms.

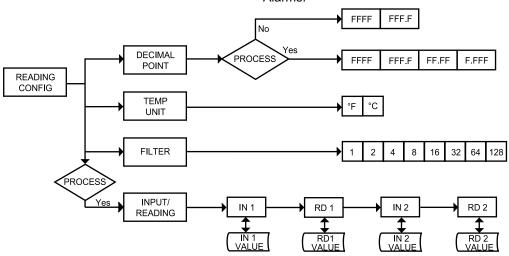


Figure 3.4 Flow Chart for Reading Configuration Menu

ENTER READING CONFIGURATION MENU:

- Press **(2)** 1) Press **(2)**, if necessary, until **(NFC** prompt appears.
- Press **2** Display advances to **HAPE** Input Menu.
- Press **2** 3) Display advances to **Red** Reading Configuration Menu.
- Press 2 4) Display advances to **JEC** Decimal Point.

DECIMAL POINT SUBMENU:

- Press **9 5**) Display flashes previous selection for Decimal location.
- 6) Scroll though the available selections and choose Decimal location: FFFF or FFFFF (also FFFFF) and FFFFF if PROC Process type was selected in the Input Type Menu).

Press **2** 7) Display shows **5** E R d stored message momentarily and then advances to **E** E **A** P Temperature Unit.

Decimal Point for Process Input Type is passive.

TEMPERATURE UNIT SUBMENU:

- Press **3** Display flashes previous Temperature Unit selection.
- Press **9**) Scroll though the available selections to the Temperature Unit of your choice: **1** or **1**.
- Press **10**) Display shows **5** E **R** d stored message momentarily and then advances to **F** E **R** Filter Constant.

FILTER CONSTANT SUBMENU:

Press 🖸	11) [Display flashe	s previous selectior	n for Filter Constant.
---------	--------------	----------------	----------------------	------------------------

- Press
 12) Scroll though the available selections:
- Press **2** 13) Display shows **5** E R d stored message momentarily only, if change was made, otherwise press **2** to advance to the next menu.

Note 🖙

If Process was selected in the Input Type Menu the display will advance to **HAR** Input/Reading Submenu, otherwise the display advances to the **RER** Alarm 1 Menu.

The Filter Constant Submenu allows the user to specify the number of readings stored in the Digital Averaging Filter.

For PID control select filter value 0001-0004. A filter value of 2 is approximately equal to 1 second RC low pass time constant.

Reading Configuration (If Process was selected)

INPUT/READING (SCALE AND OFFSET) SUBMENU:

Input Voltage or Current can be converted or scaled into values appropriate for the process or signal being measured. So, a reading may be displayed, for example, in units of weight or velocity instead of in amperes or volts.

The instrument determines Scale and Offset values based on two user-provided input values entered with the corresponding readings. Note that "In1" Input 1 and "In2" Input 2 are represented and entered as a product of the input voltage/current and the conversion number from the Table 3.1.

Note 🖙	4-20 mA	wing instructions include details for a specific scenario in which a input (in the 20 mA Process Mode) is to be represented as a ement of 0-100 percent.
Pres	ss 🕗	14) Press 🕑 at the TH.R.d prompt. Display shows TH I Input 1 submenu.
	ss ❹ ss ❹ & ♥	15) Display shows Input 1 value with 1 st digit flashing.
	Note 🖙	Disregard the position of the decimal point, such that 2000 counts may actually appear as "200.0", "20.00", or "2.000".
	55 0 55 0 & 0	Example: 4 mA as 4(mA) x 500 = 2000. 17) Display advances to Rel Reading 1 Submenu. 18) Use () and () buttons to enter Rel value. This value represents IN in terms of some meaningful engineering units. To show the 4 mA as zero percent enter Rel value = 0000.
	55 9 55 9	Example: d value = 0000. 19) Display d Input 2 Submenu. 20) Display shows Input 2 value with 1 st digit flashing. The d value = max. input value * conversion number. Example: 20(mA) x 500 = 10000 (9999).
	ss 🗘 & 🗘	
		23) Use \bigcirc and \bigcirc buttons to enter \bigcirc \bigcirc value. Example: \bigcirc \bigcirc value = 0100.
Pres	ss 🖸	24) Display flashes 5 E R d stored message momentarily and then advances to B L R d only, if change was made, otherwise press O to advance to B L R d Alarm 1 Menu.

Conversion number is a coefficient of conversion between input values and real full display range (10000 counts, shown as 9999). See Table 3.2 below for proper conversion number.

Table 3.2 Conversion Table

RANGE	CONVERSION NUMBER
100 mV	10000 / (100 x 1) = 100
1 V	10000 / (1000 x 1) = 10
10 V	10000 / (1000 x 10) = 1
0 -20 mA	10000 / (20 x 1) = 500

Example =

0 - 1 V = 0 - 100.0In 1 = 0 Rd 1 = 0

Inp 2 = 9999

Rd 2 = 100.0

3.2.6 Alarm 1

This unit is equipped with two physical outputs that can only be configured as follows: Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2. Analog Out available only if Analog Output Option board is factory installed.

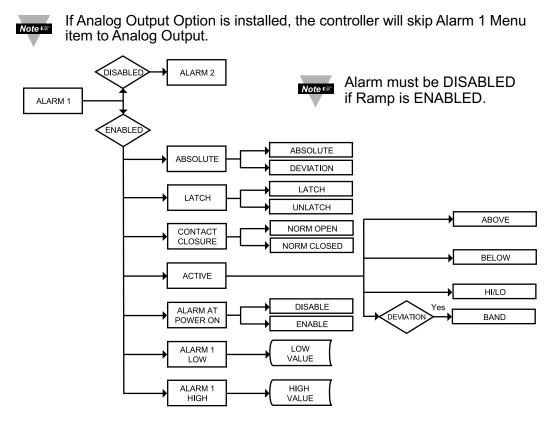


Figure 3.5 Flow Chart for Alarm 1

ENTER ALARM 1 MENU:

Press

- Press **O** 1) Press **O**, if necessary, until **CNFC** prompt appears.
 - 2) Display advances to UNPE Input Menu.
- Press **(a)** Press **(b)**, if necessary, until Display advances to **(BLR)** Alarm 1 Menu.
- Press **O4)** Display advances to Alarm 1 **ENDL** Enable or **d5bL** Disable
Submenu and flashes the previous selection.

ALARM 1 ENABLE/DISABLE SUBMENU:

- Press
 5) Scroll though the available selection until ENGL displays to use Alarm 1.
- 6) Display shows 5ERd stored message momentarily and then advances to 8650 only if it was changed, otherwise press O to advance to 8650 Alarm 1 Absolute/Deviation Submenu.

If d56t Alarm 1 Disabled was selected, all submenus of Alarm 1 Menu will be skipped and meter advances to ALR2 Alarm 2 Menu. If ENBL Alarm 1 Enabled was selected, Output 1 would be automatically Disabled, and reassigned as Alarm 1.

ALARM 1 ABSOLUTE/DEVIATION SUBMENU:

- Press Image: The second selectionPress Image: The second selectionPress Image: The second selection7) Display flashes previous selection.7) Display flashes previous selection.76 Second selectionAbsolute or Image: The second selection selection76 Second selection76 Second selection
- **8)** Display shows **5** E **R** d stored message momentarily and then advances to **L** E **C** H only if it was changed, otherwise press **O** to advance to **L** E **C** H Alarm 1 Latch/Unlatch Submenu.

Absolute Mode allows Alarm 1 to function independently from Setpoint 1. If the process being monitored does not change often, then "Absolute" Mode is recommended.

Deviation Mode allows changes to Setpoint 1 to be made automatically to Alarm 1. Deviation mode is typically the ideal mode if the process temperature changes often. In Deviation Mode, set Alarm 1 a certain number of degrees or counts away from Setpoint 1 — this relation remains fixed even if Setpoint 1 is changed.

ALARM 1 LATCH/UNLATCH SUBMENU:

- Press **9**) Display flashes previous selection. Press **6** to **LECH** Latched or **UNLE** Unlatched.
- Press **10**) Display shows **5** E R d stored message momentarily and then advances to **C** E.C L only, if it was changed, otherwise press **10** to advance to **C** E.C L Contact Closure Submenu.

Latched Mode: Relay remains "latched" until reset. To reset already latched alarm, select Alarm Latch and press Max twice (i.e. Unlatch and then back to Latch) or from a Run Mode, push **2** twice to put the controller in Standby Mode and then push **2** one more time to return to the Run Mode.

Unlatched Mode: Relay remains latched only as long as the alarm condition is true.

CONTACT CLOSURE SUBMENU:

- Press **11**) Display flashes previous selection. Press **1** to **H.c.** Normally Closed or **H.c.** Normally Open.
- Press **2 12**) Display shows **5** E **R d** stored message momentarily and then advances to **B c E d** only if it was changed, otherwise press **2** to advance to **B c E d** Active Submenu.

Normally Open: If this feature is selected, then the relay is "energized" only when an alarm condition occurs.

Normally Closed: "Fail Safe" Mode. Relay is energized under "normal" conditions and becomes de-energized during alarm or power failure.

ACTIVE SUBMENU:

- Press **13)** Display flashes previous selection. Press **•** to scroll through the available selections: **BboV** Above, **bELo** Below, **HILo** HI/Low and **bAVd** Band. (Band is active if **bEV** Deviation was selected).
- Press **14)** Display shows **5** E **R** stored message momentarily and then advances to **R**.**P**.**o N** only if it was changed, otherwise press **O** to advance to **R**.**P**.**o N** Alarm Enable/Disable at Power On Submenu.

Above: Alarm 1 condition triggered when the process variable is greater than the Alarm Hi Value (Low value ignored).

Below: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value (Hi value ignored).

Hi/Low: Alarm 1 condition triggered when the process variable is less than the Alarm Low Value or above the Hi Value.

Band: Alarm 1 condition triggered when the process variable is above or below the "band" set around Setpoint 1. Band equals Hi Value (Low Value ignored). A "band" is set around the Setpoint by the instrument only in the "Deviation" Mode.

ALARM ENABLE/DISABLE AT POWER ON:

- Press **15**) Display flashes previous selection. Press **C** to **ENDL** enable or **J56L** disable.
- Press **16**) Display shows **5 E R d** stored message. momentarily and then advances to **A L R . L** only if it was changed, otherwise press **O** to advance to the **A L R . L** Alarm 1 Low Value Submenu.

If the alarm is enabled at Power On, the alarm will be active right after reset. If the alarm is disabled at Power On, the alarm will become enabled when the process value enters the non alarm area. The alarm is not active while the process value is approaching Setpoint 1.

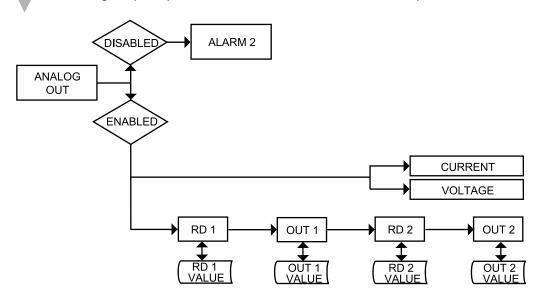
ALARM 1 LOW VALUE SUBMENU:

- Press **17**) Display flashes 1st digit of previous value. Use **17**) and **17** to enter new value.
- Press **O** & **O 18**) Use **O** and **O** to enter Alarm 1 Low Value.

Press **19**) Display shows **5** E **R** a storage message momentarily and then advances to **R** L **R** and **R** only, if it was changed, otherwise press **1** to advance to **R** L **R** and **1** Hi Value Submenu.

ALARM 1 HI VALUE SUBMENU:

- Press **O 20)** Display flashes 1st digit of previous value. Use **O** and **O** to enter new value.
- Press **O** & **O 21**) Use **O** and **O** to enter Alarm1 Hi Value.
- Press **2** Display shows **SERG** stored message momentarily and then advances to the next menu only, if it was changed, otherwise press **2** to advance to the next menu.


3.2.7 Analog Output (Retransmission)

Analog Output can be configured as Retransmission or Control outputs. In this section we will discuss Retransmission Output.

This unit is equipped with two physical outputs that can only be configured as follows: Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2. Analog Output is available only, if Analog Output Option board is factory installed.

Note set If Analog Output Option is not installed, the instrument will skip to Alarm 2 Menu.

Figure 3.6 Flow Chart for Analog Output (Retransmission)

ENTER ANALOG OUTPUT MENU:

- Press **O** 1) Press **O**, if necessary, until **ENF** prompt appears.
- Press **2** Display advances to **THPE** Input Menu.
- Press **(a)** Press **(b)**, if necessary, until Display advances to **(b)** Analog Output Menu.

ANALOG OUTPUT ENABLE/DISABLE SUBMENU:

- **5)** Scroll though the available selection until **ENDL** displays to use Analog Output Retransmission (output proportional to the input signal).
- Press O
 6) Display shows SERd stored message momentarily and then advances to CURR or NoLE Submenu only if it was changed, otherwise press O to advance to CURR or NoLE Current/Voltage Submenu.

If d56L Analog Output **Disabled** was selected, all submenus of Analog Output Menu will be skipped and the meter will advance to dLR2 Alarm 2 Menu. If ENGL Analog Output **Enabled** was selected, Output 1 would be automatically **Disabled**, and reassigned as Analog Output.

CURRENT/VOLTAGE SUBMENU:

- Press **7**) Display flashes **CURR** Current or **Volt** Voltage.
- Press **8**) Scroll through the available selection: Current or Voltage (Example Volt E).
- Press Image: 9) Display showsSteller and stored message momentarily and then
advances to Roll Submenu only if it was changed, otherwise
press Image: to advance to Roll Reading 1 Submenu.

READING 1:

Press 🖸	10) Display flashes	1st digit of previous	"Reading 1" value.
---------	---------------------	-----------------------	--------------------

- Press **O** & **O 11**) Enter "Reading 1" value. (Example 0000)
- Press O 12) Display advances to OUE. Out 1 Submenu.

OUT 1:

Press 🖸	13) Display flashes	⁵ 1 st digit of previous "Out 1" value.

- Press **O** & **O** 14) Enter "Out 1" value. (Example 00.00)
- Press **15**) Display advances to Re 2 Reading 2 Submenu.

READING 2:

- Press **9 16**) Display flashes 1st digit of previous "Reading 2" value.
- Press **O** & **O 17**) Enter "Reading 2" value. (Example 9999)
- Press **18**) Display advances to **DUE**. Out 2 Submenu.

OUT 2:

Press	0	19)	Display	y flashes	1 ^{stt}	digit of	f pre	vious '	'Out 2"	value.	
_	-	 (, _					

- Press **O** & **O** 20) Enter "Out 2" value. (Example 10.00)
- Press **2 21**) Display advances to the **BUR2** Alarm 2 Menu.

Note 🖙

The above example is for 0-10 V of the entire range of the Process Input and Analog Output. For 0-20 mA output you need to set "Analog Type" to Current and OUT 2 to 20.00. **Accuracy of Analog Output** board is +/-1% of FS (Full Scale) when following conditions are satisfied:

- 1. The input is not scaled below 1% of Input FS (10 mV @ 1 V or 0.2 mA @ 20 mA input ranges).
- Analog Output is not scaled below 3% of Output FS (300 mV @ 10 V or 0.6 mA @ 20 mA output ranges).

Otherwise certain corrections need to be applied.

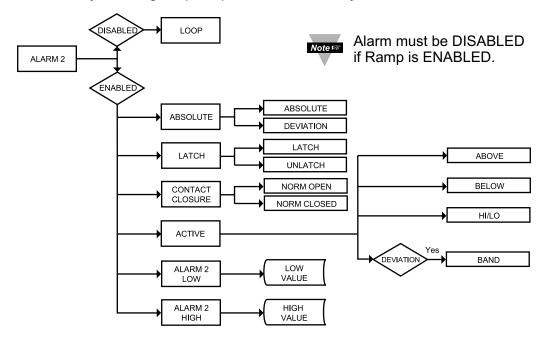
For example:

For entire range of process input, the Analog Output on 10 V FS scaled for **300 mV** output range:

Rd1 = 0000, Out1 = 00.00 RD2 = 9999, Out2 = 00.30

The measured output will be as follows:

Rd1 = 0000, Out1 = -0.07 V Rd2 = 9999, Out2 = 0.23 V


This means that for 300 mV output range we have -70 mV offset at zero and at full scale. In order to compensate this 70 mV offset the **correct scaling** will be as follows:

Rd1 = 0000, Out1 = 00.07 Rd2 = 9999, Out2 = 00.37

The above corrections need to be applied only for **Input scaled below 1% of FS** and **Output scaled below 3% of FS** or if you need the **Analog Output** accuracy to be better than 1% of FS.

3.2.8 Alarm 2

This unit is equipped with two physical outputs that can only be configured as follows: Alarm 1 & Alarm 2, Alarm 1 & Output 2, Output 1 & Alarm 2, Output 1 & Output 2, Analog Out 1 & Alarm 2, Analog Out 1 & Output 2. Analog Out available only if Analog Output Option board is factory installed.

Figure 3.7 Flow Chart for Alarm 2

ENTER ALARM 2 MENU:

- Press **(a)** 1) Press **(a)**, if necessary, until **ENFC** prompt appears.
- Press **2** Display advances to **THPE** Input Menu.
- Press **(a)** Press **(b)**, if necessary, until Display advances to **BLR2** Alarm 2 Menu.
- Press
 4) Display advances to Alarm 2 ENEL Enable or d56L Disable Submenu.

ALARM 2 ENABLE/DISABLE SUBMENU:

- Press 5) Display flashes previous selection. Press • until ENEL displays to use Alarm 2.
- 6) Display shows 5ERd stored message momentarily and then Press advances to 8550 only if it was changed, otherwise press () to advance to 8650 Absolute/Deviation Submenu.

If d56t Alarm 2 Disabled was selected, all submenus of Alarm 2 will be skipped and meter advances to **LOOP** Loop Break Time Menu. If ENGL Alarm 2 Enabled was selected, Output 2 will automatically **Disabled**, and reassigned as Alarm 2.

The remaining Alarm 2 menu items are identical to Alarm 1 Menu. Note 🖙 Modifying Alarm Settings will not reset the instrument.

3.2.9 Loop Break Time

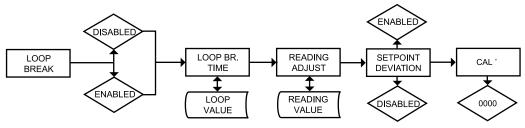


Figure 3.8 Flow Chart for Loop Break Time

ENTER LOOP BREAK TIME MENU:

Press 📀	1) Press ②, if necessary,	until CHFC prompt appears.
---------	---------------------------	----------------------------

- Press 2) Display advances to THPE Input Menu.
- Press 🕢 3) Press 2, if necessary, until Display advances to LOOP Loop Break Time Menu.
- 4) Display advances to Loop Break Time ENGL Enable or d56L Press Disable Submenu and flashes the previous selection.

LOOP BREAK ENABLE/DISABLE SUBMENU:

5) Scroll through the available selections: EHEL or d56L. Press **O**

Press 6) Display shows 5 t R d stored message momentarily and then advances to **b.t** In Loop Break Time Value Submenu.

Loop Break is an additional safety feature intended to monitor the rate of change of the process value, while approaching the SP1. It is strictly intended as an additional warning system, therefore its use is entirely optional. An active Loop Break will cause the Process Value digits to blink in a rotating pattern. If the process value reaches the set point the blinking will stop and b.t in is completed successfully, otherwise **bR.AL** Break Alarm warning will flash, and Output 1 will be turned off.

LOOP BREAK TIME VALUE SUBMENU:

- Press **9 7**) Display flashes 1st digit of previous Loop Value.
- Press & 8) Press and buttons to enter a new Loop Value (0 to 99.59).
- PressImage: Display showsImage: Berger and stored message momentarily and then advances toReading Adjust Submenu.

Loop Break Time Value allows the user to determine the time interval in MM:SS (from zero to 99 minutes and 59 seconds) that the Process Value changes at least 10 counts or if the Input Type is either RTD or Thermocouple, the value changes 4° Fahrenheit or 2° Celsius. At the specified time interval, if the process value change is less than the stated rate, flashing **b.t** III will be displayed, the output 1 will be de-energized, and Alarm 1 energized. Loop break time will be disabled when the Process Value (PV) enters the control band.

C.J. READING ADJUST SUBMENU:

Press **10**) Display flashes 1st digit of previous reading adjust value.

Press • & • 11) Press • and • buttons to enter a new Reading Adjust value (-1999 to 9999).

Press **12**) Display shows **5** E **R** d stored message momentarily and then advances to **5** P.d **V** Setpoint Deviation Menu.

Reading Offset Adjust (C.J.) allow the user to fine tune a minor error of the transducer, however some applications may require a large offset adjust. (Displayed Process Value = Measured Process Value ± R.ADJ). R.ADJ is adjustable between -1999 to 9999.

SETPOINT DEVIATION ENABLE/DISABLE SUBMENU:

Press13) Display advances to Setpoint DeviationENDLEnable ord SolutionPressDisable Submenu and flashes the previous selection.14) Scroll through the available selections:ENDLor15) Display showsSERd stored message momentarily and then advances toCRL

Setpoint Deviation Submenu, if "enabled", allows changes to Setpoint 1 to be made automatically to Setpoint 2. This mode is very helpful if the Process Value changes often. In Setpoint Deviation Mode, set SP2 a certain number of degrees or counts away from SP1 - this relation remains fixed when SP1 is changed. For instance: Setting SP1=200 and SP2=20 and enabling **SP.** means that the absolute value of SP2=220. Moving SP1 to 300, the absolute value of SP2 becomes 320.

THERMOCOUPLE FIELD CALIBRATION SUBMENU:

CAUTION: Do not perform the following steps until you fully understand this entire section.

RTD and Process are perfectly calibrated. This section is applicable to Thermocouple (TC) calibration *only*.

Be sure that the TC being used to calibrate the meter is of the type selected in the TC submenu. Place the TC in an ice-bath (or other **0°C / 32°F** environment). In ambient temperature conditions: connect the TC to the meter, apply power to the meter.

CAUTION: Do not proceed with TC calibration unless the above conditions have been in effect for at least one hour.

- Press 🧿 7) Display shows CAL[®].
- Press **9 8**) Display shows flashing **9000**.

Press **O** * **9**) Display will still show flashing **DDDD**.

Press **O** * **10**) Display shows **OUE** (meaning Calibration is complete)

If you accidently engage the flashing OOOO (CAL° alert) simply re-press the last button you pressed, to avoid unintentionally mis-calibrating your meter.

b

3.2.10 Output 1

Alarm 1 and Output 1 or Analog Output (Retransmission) share the same contacts on the rear panel connector. If Alarm 1 or Analog Output (Retransmission) is **Enabled**, Output 1 is automatically **Disabled**.

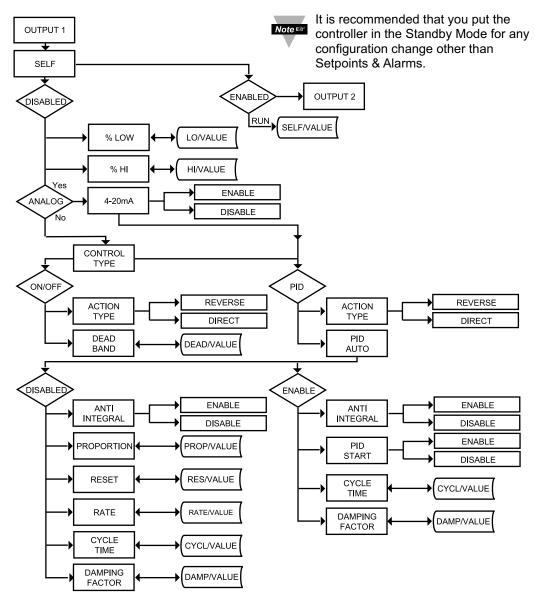


Figure 3.9 Flow Chart for Output 1

ENTER OUTPUT 1 MENU:

Press (a)
Press (b)
Press (c)
Pres

SELF SUBMENU:

Press

The Self Option allows the output of the instrument to be controlled manually from the front panel.

Press 🖸	5) Display flashes the current setting of Self, ENGL Enabled or
	Biodologi

Press **O 6**) Press the **O** button to select between Enable and Disable.

7) If Self ENDL Enabled was selected, display shows SERd stored message momentarily and then advances to the next menu (Output 1 setting is completed).

The output is now under the direct control of the operator and can be adjusted in the Run Mode (1000.0 to 1999.9), by pressing the O and O buttons, where M calls for the Manual (Self) Control. For example, setting of 1900.0 of an Analog Output of 0 to 10 Vdc would produce roughly 5 Vdc at the output.

8) If Self d5bt Disabled was selected, display shows 5tred stored message momentarily and then advances to oot 0 Minimum/Percent Low Submenu of Output 1 Menu.

There is a shorter way to Enable or Disable Self Mode. From a Run Mode, press ④ and then press ④. Self Mode is Enabled now. Press ④ or O to display MXX.X. To disable Self, press ④ and then press ④. Display goes to the Run Mode. Self Mode is Disabled now.

MINIMUM/PERCENT LOW SUBMENU:

Specify in percent, the minimum value (0000) for control output. If the output is analog proportional (Current or Voltage), then the minimum voltage or current, in percent, is specified. If the output is time proportional (Relay, SSR or Pulse), then the minimum duty-cycle, in percent, is specified.

Press 🖸	9) Display flashes 1st digit of previous "Percent Low" setting.
Press 🛛 & 🛇	10) Use O and O buttons to enter a new value for "Percent Low".
Press 🕗	11) Display shows 5도 R d stored message momentarily and then
	advances to PH Maximum/Percent High Submenu.

MAXIMUM/PERCENT HIGH SUBMENU:

Specify in percent, the maximum value (99) for control output. If the output is analog proportional (Current or Voltage), then the maximum voltage or current, in percent, is specified. If the output is time proportional (Relay, SSR, or Pulse), then the maximum duty-cycle, in percent, is specified.

Press●12) Display flashes 1st digit of previous "Percent High" setting.Press●▲●Press●■13) Use ● and ● buttons to enter a new value for "Percent High".14) Display shows5ERd stored message momentarily and then advances to EERL Control Type Submenu.

Example: On an Analog Output of $0 \sim 10$ Vdc, a setting of %LO = 10 and %HI = 90, cause the minimum on the control output to be 1 V and the maximum on the control output to be 9 V. The same setting on a time proportional output, will cause 10% duty cycle for the minimum control output and 90% duty cycle for maximum control output. To disable %LO/HI, set LO to 00 and HI to 99. If %LO/HI is at other values than the default (%LO = 00, %HI = 99), **50** fk is disabled.

*CONTROL TYPE OUTPUT:

(Relay, SSR, Pulse or Analog)

- Press **15**) Display flashes **DH.OF** On/Off or **Proportional**, Integral, Derivative.
- Press **16**) Scroll through th<u>e available selections: "ON/OFF</u>" or "PID".
- Press

 17) Display flashes 5ERd stored message momentarily and then advances to REEN only, if it was changed, otherwise press
 to advance to REEN Action Type Submenu.

The **ON/OFF** control is a coarse way of controlling the process. The "Dead Band" improves the cycling associated with the On/Off control. The **PID** control is best for processes where the Setpoint is continuously changing and/or a tight control of the process variable is required. PID control requires tuning and adjustment of the "Proportional", "Integral or Reset" and "Derivative or Rate" terms by a trial-and-error method. The instrument provides an "Auto Tuning" feature making the tuning process automatic, possibly optimum.

* If Analog Output (Current/Voltage) is your control Output 1, this menu i.e. type will not appear, instead 4-20 Current will be displayed. Select ENEL for a 4-20 mA current (2-10 V Voltage) outputs or 456L for a 0-20 mA current (0-10 V Voltage) outputs. If 4-20 mA is enabled, %HI/LO setting will have no effect.

Note Both Current and Voltage control outputs are active simultaneously.

ACTION TYPE SUBMENU:

The error that results from the measurement of the Process Variable may be positive or negative since it may be greater or smaller than the Setpoint. If a positive error should cause the instrument output to increase (i.e. cooling), it would be called **Direct Acting**. If a negative error should cause the output to increase (i.e. heating), it would be called **Reverse Acting**.

- 18) Display flashes dRct Direct or RVR5 Reverse. Press
- 19) Scroll through the available selections: "Direct" or "Reverse". Press **O**

Press

20) Display shows 5ERd stored message momentarily and then advances to BUE o only, if it was changed, otherwise press O to advance to BUE Auto PID Submenu (if PID Control Type was selected).

If "ON/OFF" was selected in the Control Type, the display skips to the Dead Band Submenu.

AUTO PID SUBMENU:

- 21) Display flashes ENDL or d56L. Press
- Press **O** 22) Scroll through the available selections: "Enable" or "Disable".
- Press 23) Display shows 5 - R d stored message momentarily and then advances to BUEL only, if it was changed, otherwise press I to advance to BUEL Anti Integral Submenu.

If "Enabled", the controller can determine, by enabling Start PID, the Note 🖙 optimum values for the three adjustments — Proportional, Reset and Rate corresponding to P. I. and D. These values may be changed once the auto tuning is complete.

If "Disabled" is selected, the user will manually enter these three adjustment values. If you want the instrument to do the auto PID and the P, PI or PID, first select auto disable and enter 0000 for unwanted parameter. i.e. for PI enter 0000 for the rate.

ANTI INTEGRAL SUBMENU:

- 24) Display flashes ENEL or d56L. Press Press **O**
 - 25) Scroll through the available selections: "Enable" or "Disable".

Press

26) Display shows 5 t R d stored message momentarily and then advances to **SERE** only, if it was changed, otherwise press **O** to advance to Start Auto Tune PID Submenu (If auto PID was Enabled).

If Auto PID was disabled display advances to PROP Proportional Band Submenu.

Note 🖙

If Anti Integral (Anti Windup) Submenu "**Enabled**", this feature allows the error term outside the proportional band to be calculated and accumulated for integration. This may be an important feature in applications where fast response time is desirable.

START AUTO TUNE PID:

- Press **2 27**) Display flashes **ENBL** or **d5b**L.
- Press **2**8) Scroll through the available selections: "Enable" or "Disable".
- Press

29) Display shows **5C** stored message momentarily and then advances to **C9C** only, if it was changed, otherwise press **()** to advance to **C9C** Cycle Time Submenu.

If "Enabled", the controller is ready to calculate P, PI or PID parameters. The instrument performs this by activating the output and observing the delay and rate at which the Process Value changes. The setpoints must be at least 18°F or 10°C above the (PV) Process Value in order to perform Auto Tune, otherwise an error message will be displayed.

To start Auto Tune PID select PID, enable Auto PID and enable Start PID. Sometimes Auto PID parameter needs fine tuning i.e. for each 5°F over shoot increase the Proportional Band (PB) by 15% and for each \pm 1°F fluctuation at the Setpoint (SP) increase reset by 20%.

Once started, display shows **BLEUN** with letters blinking in the rotating pattern. When auto tune stops, display will show process value. Do not perform any operations or settings before first stopping Auto Tune. Any alarms or other output is disabled during Auto Tune.

If "AUTO PID" was "DISABLED", the display will show the following three submenus. This allows the user to manually enter values for Proportional, Reset and Rate terms corresponding to P, I, and D. It also can be used for auto PID for disabling unwanted parameter i.e. PI enter 0000 for rate.

PROPORTIONAL BAND SUBMENU:

- Press **30)** Display flashes 1st digit of the previous **P PROP** Proportional band value.
- Press O & O 31) Press O and O buttons to enter a new "Proportional Band" value.
- Press **2 32)** Display shows **5** E **R d** stored message momentarily and then advances to **RE5E** only, if it was changed, otherwise press **2** to advance to **RE5E** Reset Setup Submenu.

Proportional band is in degrees of temperature or counts of process. Proportional band is defined, as the change in the instrument input to cause a 100% change in the controller output.

RESET SETUP SUBMENU:

Press **33**) Display flashes 1st digit of the previous I **RESE** Reset value.

Press **O** & **O** 34) Press **O** and **O** <u>buttons</u> to enter a new "Reset" value.

Press 🖸

35) Display shows **5** E R d stored message momentarily and then advances to **RALE** only, if it was changed, otherwise press **2** to advance to **RALE** Rate Setup Submenu.

Reset unit is in seconds 0-3999.

RATE SETUP SUBMENU:

Press **36**) Display flashes 1st digit of previous **D RALE** Rate value.

Press O & O 37) Press O and O buttons to enter a new REE value.

Press **38**) Display shows **5ERd** stored message momentarily and then advances to the **595** only, if it was changed, otherwise press **o** to advance to **595** Cycle Time submenu for RTD and Thermocouple types.

Rate unit is in seconds 000.0-399.9.

If the Output 1 is Analog Option the display skips to Damping Factor.

CYCLE TIME SUBMENU:

- Press **39**) Display flashes 1st digit of the previous **CYCL** Cycle Time value.
- Press **40**) Press and buttons to enter a new "Cycle Time" value. (1 to 199 seconds)
- **41)** Display shows **5** E R d stored message momentarily and then advances to dPNG only, if it was changed, otherwise press **2** to advance to dPNG Damping Factor Submenu.

A Cycle Time selected between 1 and 199 seconds determines the total On/Off time of each proportional cycle. For example, a 15 second cycle time means that every 15 seconds the output will turn on for part or all of the cycle. For Relay control outputs, do not select a cycle time of less than 7 seconds or the relays' lifetime will be shortened. For a cycle time of less than 7 seconds select SSR or DC pulse. Use an external SSR with the DC pulse option for higher currents (higher than 1 Amp).

DAMPING FACTOR SUBMENU:

- Press **2 42)** Display flashes the previous "Damping Factor" selection.
- Press
 43) Scroll through the available selections: 0000, 0001, 0002, 0003, 0003, 0005, 0005, 0005.
- Press **44**) Display flashes **5** E **R** d stored message and then advances to **3** U E 2 only, if it was changed, otherwise press **(a)** to advance to **3** U E 2 Output 2 Menu.

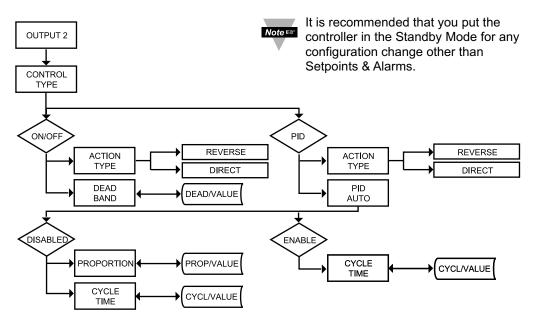
Damping Factor is a measure of speed, overshoot, and undershoot in which the process variable responds to the output changes of the instrument, which were used during the Auto Tune. This value is typically set to the ratio of Rate to Reset. This Default value is (0003). For fast response time, this value should be decreased while for slow response time it should be increased.

The "DEADBAND" Submenu will only appear if "ON/OFF" was selected from the "Control Type" Menu.

DEADBAND SUBMENU:

Press **45)** Display flashes 1st digit of the previous **dERd** Deadband value.

Press O & O 46) Press O and O buttons to enter a new "Deadband" value. Press O 47) Display shows **SERd** stored message and then advances to **OUER** only, if it was changed, otherwise press O to advance to **OUER** Output 2 Menu.


Dead Band units are the same as Proportional Band units.

The Dead Band or neutral zone is the number of degrees or counts (if Input Type is Process) around the Setpoint which the Process Variable must pass above or below the Setpoint, before the output changes state.

3.2.11 Output 2

Output 2 and Alarm 2 share the same contacts on the rear panel connector. If Alarm 2 is **Enabled**, Output 2 is automatically **Disabled**.

Figure 3.10 Flow Chart for Output 2

ENTER OUTPUT 2 MENU:

	Press 📀	1) Press ②, if necessary, until CNFC prompt appears.
--	---------	--

- Press **2** Display advances to **THPE** Input Menu.
- Press (a) Press (b), if necessary, until Display advances to (DUE 2) Output 2 Menu.
- Press **4**) Display advances to **CERL** Control Type Submenu.

CONTROL TYPE SUBMENU:

- Press **3**) Display flashes **DN.OF** ON/OFF, or **P 1** PID.
- Press 4) Scroll through the available selections: "ON/OFF" or "PID".

Press •5) Display shows 5분 유급 stored message momentarily and then
advances to 유료님의 only, if it was changed, otherwise press • to
advance to 유료님의 Action Type Submenu.

The ON/OFF control is a coarse way of controlling the Process. The "Dead Band" improves the cycling associated with the ON/Off control. The PID control is best for processes where the Setpoint is continuously changing and/or tight control of the Process Variable is required.

ACTION TYPE SUBMENU:

The error that results from the measurement of the Process Variable may be positive or negative since it may be greater or smaller than the Setpoint. If a positive error should cause the instrument output to increase (i.e. cooling), it would be called **Direct Acting**. If a negative error should cause the output to decrease (i.e. heating), it would be called **Reverse Acting**.

- Press **O** 6) Display flashes **dRct** Direct or **RVR5** Reverse.
- Press O
 7) Scroll through the available selections: "Direct" or "Reverse".
 8) Display shows 5580 stored message momentarily and then
 - 8) Display shows **SERd** stored message momentarily and then advances to **RUED** only, if it was changed, otherwise press **O** to advance to **RUED** Auto PID Submenu (If PID Control type was selected).

Notes If ON/OFF was selected in the Control Type, the display skips to the Dead Band Submenu.

AUTO PID SUBMENU:

Press 🖸	9) Display flashes ENGL Enable or d56L Disable.
---------	---

Press **1**0) Scroll through the available selections: "Enable" or "Disable".

- If "Enabled", the PID parameter of Output 1 will be copied to Output 2.
- Press **O 11)** Display shows **SERD** stored message momentarily and then advances to the next submenu only, if it was changed, otherwise press **O** to advance to the next submenu.

If AUTO PID was ENABLED", the display skips to the EYEE CYCLE TIME submenu. If "AUTO PID" was "DISABLED", the display will show PROPORTIONAL BAND Submenu allowing the user to manually enter the Proportional Band value.

The Reset and Rate value are the same as Output 1.

PROPORTIONAL BAND SUBMENU:

- Press **1**2) Display flashes 1st digit of the previous Proportional Band value.
- Press & 13) Press and buttons to enter a new Proportional Band value.
- Press **14)** Display shows **5ERd** stored message momentarily and then advances to **59EE** only, if it was changed, otherwise press **2** to advance to the **59EE** Cycle Time Submenu.

Noters Refer to "Proportional Band" Submenu of "Output 1" Menu.

CYCLE TIME SUBMENU:

Press **15**) Display flashes 1st digit of the previous "Cycle Time" value.

- Press O & O 16) Press O and O buttons to enter a new "Cycle Time" value (1 to 199 seconds).
- Press **17**) Display shows **5** E **R** d stored message momentarily and then advances to **RAMP** only, if it was changed, otherwise press **2** to advance to **RAMP** Ramp Value Submenu.

A cycle time selected between 1 to 199 seconds indicates the total On/Off time of each proportional cycle. For example, a 15 second cycle time means that every 15 seconds the output will turn on for part or all of the cycle. For Relays' Control Outputs, do not select a cycle time of less than 7 seconds or the relays' lifetime will be shortened. For a cycle time of less than 7 seconds select SSR or DC pulse. Use an external SSR with the DC pulse option for higher current (higher than 1 Amp).

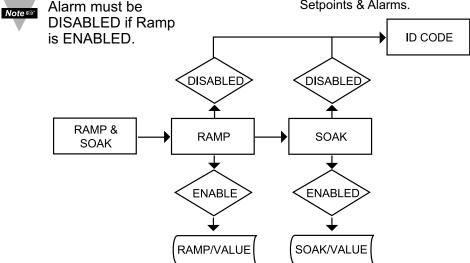
The DEADBAND Submenu will only appear if the ON/OFF was selected from the "Control Type" Submenu.

DEADBAND SUBMENU:

Press **18**) Display flashes 1st digit of the previous "Dead Band" value. Press **2 4 0 19**) Press **2** and **2** buttons to enter a new "Dead Band" value. Press **2 19**) Display shows **5 c R d** stored message momentarily and then

advances to RAMP and then advance to RAMP Ramp Value Menu.

Dead Band units are the same as Proportional Band units.



The Dead Band is the number of degrees or counts around the Setpoint which the Process Variable must pass through before the output changes state.

3.2.12 Ramp & Soak

Note 🖙

It is recommended that you put the controller in the Standby Mode for any configuration change other than Setpoints & Alarms.

Figure 3.11 Flow Chart for Ramp and Soak

ENTER RAMP AND SOAK MENU:

- Press **()** 1) Press **()**, if necessary, until **(NFC** prompt appears.
- Press 2 2) Display advances to UNPE Input Menu.
- Press (a) Press (b), if necessary, until Display advances to RAMP Ramp and SOAK Soak Menu.

RAMP ENABLE/DISABLE SUBMENU:

Press 🖸	4) Display advances to "Ramp Enable/Disable" Submenu and
_	flashes ENGL or d56L.

Press O
Press O
Scroll through the available selections: "Enable" or "Disable".
Display shows SERC stored message momentarily and then advances to SOBK Soak Enable/Disable Menu.

If **RAMP Disable** was selected, display skips to the next menuitem (ID Code).

SOAK ENABLE/DISABLE SUBMENU:

- Press **O** 7) Display flashes **ENDL** or **d5bL**.
- Press **0 8**) Scroll through the available selections: "Enable" or "Disable".
- Press **9**) Display shows **5** t **R** at stored message momentarily and then advances to "Ramp Value" Submenu.

Ramp & Soak provides users with the flexibility to slowly bring the Process Variable (PV) to the desired setpoint. Ramp & Soak values are specified in HH.MM format. The Ramp value indicates the time specified to bring the process variable to Setpoint 1 (SP1). Once the set point is reached, the PID takes over and the Process Variable will be controlled at the desired set point indefinitely. If Soak is enabled, PID will control the Process Variable at the specified Setpoint for the duration of Soak time and then will turn off Output 1. To start a new Ramp/Soak cycle, reset the instrument by pressing ② and then \bigcirc button.

An active Ramp/Soak will change SP1 one degree above the PV and will cause the most significant digit to blink. The SP1 will be incremented by one degree until it reaches the original SP1. The minimum Ramp time must be at least twice the time that it will take the PV to reach the Setpoint Value (SV) with OUT 1 fully ON.

RAMP VALUE SUBMENU:

Press **10**) Display flashes 1st digit of previous stored "Ramp Value".

Press O & O 11) Press O and O buttons to enter a new "Ramp Value".

Press **12**) Display shows **5ERd** stored message momentarily and then advances to "Soak Value" Submenu.

SOAK VALUE SUBMENU:

Press **13**) Display flashes 1st digit of previous stored "Soak Value".

Press O & O 14) Press O and O buttons to enter a new "Soak Value".

Press **2 15** Display shows **5** E **R d** stored message and advances to the **1 d** ID Code Menu.

The Ramp and Soak time is 00:00 to 99:59 i.e. HH.MM. (from zero to 99 hours and 59 minutes) During Ramp & Soak do not perform any operations or settings before first stopping it. Any alarms or other output are disabled during this time. To stop Ramp & Soak first put instrument into Standby Mode, then go to Ramp & Soak Menu and disable it.

3.2.13 ID CODE

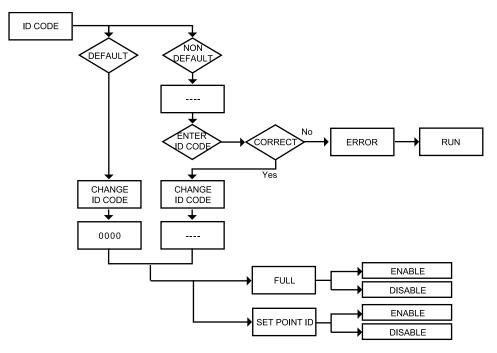


Figure 3.12 Flow Chart for ID Code

ENTER ID CODE MENU:

Press 📀	1) Press ②, if necessary, until CHFC prompt appears.
---------	--

- Press
- 2) Display advances to HE Input Menu.
 3) Press ②, if necessary, until Display advances to HE ID Code Press 🕗 Menu.

ENTERING OR CHANGING YOUR (NON-DEFAULT) ID CODE:

Press O Press O & O Press O	 4) Display advances to with 1st under score flashing. 5) Press ● and ● to enter your 4-digit "ID Code" number. 6) Display advances to
Note 🖙	If entered "ID Code" is incorrect display shows ERRO Error message momentarily and then skips to the Run Mode.
Press O	 Display flashes the first digit of previous entered "ID Code" number.
Press 0 & 0 Press 0	

ENTERING OR CHANGING YOUR (DEFAULT) ID CODE:

Enter de menu (Repeat steps from 1 to 3).

10) Display advances to **EH. 13** Change ID Code Submenu. Press

11) Display shows 0000 message with flashing 1st digit. Press 🖸

If you want to change your default "ID Code" you can do it now, otherwise press 🕗 and menu will skip to FULL Full Security Submenu.

Press **O** & **O** 12) Press **O** and **O** buttons to enter your new "ID Code" number. Press 13) Display shows 5 - R d stored message momentarily and then advances to the FULL Full Security Submenu.

FULL SECURITY LEVEL SUBMENU:

Press 🖸	14) Display flashes EHBL Enable or d56L Disable.
---------	--

Press **O** Scroll through the available selections: "Enable" or "Disable".

Press 🖸

16) Display shows **5** *R* **d** stored message momentarily and then advances to 5P. 1d Setpoint/ID Submenu.

If "Full" Security Level is "Enabled" and the user attempts to enter the Main Menu, they will be prompted for an ID Code. The ID Code should be correct to enter the instrument Menu item.

SETPOINT/ID SECURITY LEVEL SUBMENU:

This Security Level can be functional only if **FULL** Security Level is Disabled.

Press	٢
Press	0

- 17) Display flashes ENGL Enable or d56L Disable.
- 18) Scroll through the available selections: "Enable" or "Disable".
- Press 🖸
- 19) Display shows 5ERd stored message momentarily and then advances to COMM Communication Submenu.

If "Setpoint/ID" Security Level is "Enabled" and the user attempts to advance into the CHEC Configuration Menu, he will be prompted for ID Code number. The ID Code should be correct to proceed into the Configuration Menu, otherwise display will show an Error and skip to the Run Mode.

If "Full" and "Setpoint/ID" Security Levels are "Disabled", the ID code will be "Disabled" and user will not be asked for ID Code to enter the Menu items ("ID" Submenu will not show up in "ID/Setpoint" Menu).

3.2.14 COMMUNICATION OPTION

Purchasing the controller with Serial Communications permits an instrument to be configured or monitored from an IBM PC compatible computer using software available from **the website or on the CD-ROM enclosed with your shipment**. For complete instructions on the use of the Communications Option, refer to the Serial Communications Reference Manual.

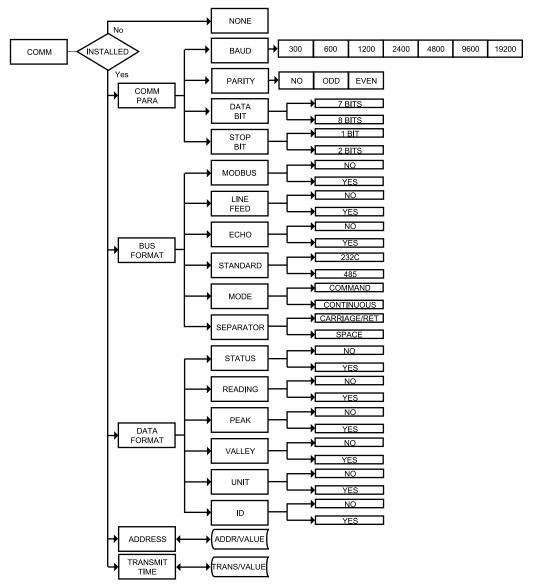


Figure 3.13 Flow Chart for Communication Option

ENTER COMMUNICATION OPTION MENU:

Press Pr	 Press Ø, if necessary, until ENEC prompt appears. Display advances to INPE Input Menu. Press Ø, if necessary, until Display advances to COMM Communication Options Menu. Display advances to COMM Display advances to COMM
Note us	Submenu. If Communication Option is not installed, the display shows 대한대로 and skips to the Color Display Menu.

COMMUNICATION PARAMETERS SUBMENU:

Allows the user to adjust Serial Communications Settings of the instrument. When connecting an instrument to a computer or other device, the Communications Parameters must match. Generally the default settings (as shown in Section 5) should be utilized.

5) Display advances to **BRUd** Baud Submenu. Press 🖸

BAUD SUBMENU:

- 6) Display flashes previous selection for **bBUJ** value. Press
- 7) Scroll through the available selections: 3001, 5001, 1200, Press **O** 2400, 4800, 9600, 19.28,
- 8) Display shows **5ERd** stored message momentarily and then Press advances to PRES only, if it was changed, otherwise press 2 to advance to PRES Parity Submenu.

PARITY SUBMENU:

- Press Display flashes previous selection for "Parity".
- Press **O** 10) Scroll through the available selections: NO, ODD, EVEN.
- Press 11) Display shows **5ERd** stored message momentarily and then advances to **GRER** only, if it was changed, otherwise press **O** to advance to dRER Data Bit Submenu.

DATA BIT SUBMENU:

- Press 12) Display flashes previous selection for "Data Bit". Press **O**
 - 13) Scroll through the available selections: 7-BIT, 8-BIT.
- Press
- 14) Display shows 5ERd stored message and then advances to **SECP** only, if it was changed, otherwise press **O** to advance to
- 5EOP Stop Bit Submenu.

STOP BIT SUBMENU:

- 15) Display flashes previous selection for "Stop Bit". Press
- Press **O** 16) Scroll through the available selections: 1-BIT, 2-BIT.

17) Display shows 5ERd stored message momentarily and then Press advances to bus.F only, if it was changed, otherwise press O to advance to **bus.** Bus Format Submenu

BUS FORMAT SUBMENU:

Determines Communications Standards and Command/Data Formats for transferring information into and out of the controller via the Serial Communications Bus. Bus Format submenus essentially determine how and when data can be accessed via the Serial Communications of the device.

18) Display advances to **1.505** Modbus Submenu. Press

MODBUS PROTOCOL SUBMENU:

Press 🖸	19) Display flashes previous selection for 1.605 .
---------	--

- Press **O** 20) Scroll through the available selections: NO, YES.
- Press 🖸 21) Display shows 5ERd stored message momentarily and then

To select iSeries Protocol, set Modbus submenu to "No".

To select Modbus Protocol, set Modbus submenu to "Yes".

If Modbus Protocol was selected, the following Communications Parameters must be set as: No Parity, 8-bit Data Bit, 1-Stop Bit. Do not attempt to change these parameters.

LINE FEED SUBMENU:

Determines if data sent from the instrument will have a Line Feed appended to the end - useful for viewing or logging results on separate lines when displayed on communications software at a computer.

Press 🕑	22) Display flashes previous selection for "Line Feed".
Press 🗅	Scroll through the available selections: NO, YES.
Press 🖸	24) Display shows 5ERd stored message momentarily and then
	advances to ECHO only, if it was changed, otherwise press I to
	advance to ECHO Echo Submenu.

ECHO SUBMENU:

When valid commands are sent to the instrument, this determines whether the command will be echoed to the Serial Bus. Use of echo is recommended in most situations, especially to help verify that data was received and recognized by the controller.

- Press O Press O Press O
- 25) Display flashes previous selection for "Echo".
- 26) Scroll through the available selections: NO, YES.

27) Display flashes **SERD** stored message momentarily and then advances to **SEND** only if it was changed, otherwise press **(b)** to advance to **SEND** Communication Standard Submenu.

COMMUNICATION INTERFACE STANDARD SUBMENU:

Determines whether device should be connected to an RS-232C serial port (as is commonly used on IBM PC-compatible computers) or via an RS-485 bus connected through appropriate RS-232/485 converter. When used in RS-485 Mode, the device must be accessed with an appropriate Address Value as selected in the Address Submenu described later.

- Press **28**) Display flashes previous selection for "Standard".
- Press **2**9) Scroll through the available selections: 232C, 485.

Press 🖸

30) Display shows 5 E R d stored message momentarily and then advances to RodE only, if it was changed, otherwise press to advance to RodE Data Flow Mode Submenu.

DATA FLOW MODE SUBMENU:

Determines whether the instrument will wait for commands and data requests from the Serial Bus or whether the instrument will send data automatically and continuously to the Serial Bus. Devices configured for the RS-485 Communications Standard operate properly only under Command Mode.

- Press **31**) Display flashes previous selection for "Mode".
- Press **32**) Scroll through the available selections: **CAR** "Command", **CONE** "Continuous".
- Press **2 33)** Display shows **5ERd** stored message momentarily and then advances to **5EPR** only, if it was changed, otherwise press **2** to advance to **5EPR** Data Separation Submenu.

DATA SEPARATION CHARACTER SUBMENU:

Determines whether data sent from the device in Continuous Data Flow Mode will be separated by spaces or by Carriage Returns.

- Press **2 34)** Display flashes previous selection for "Separation" Submenu.
- Press **35**) Scroll through the available selections: **SPEE** "Space" or **Carriage** Return".

Press **2 36)** Display shows **5** E **R d** stored message momentarily and then advances to **dR t . F** only, if it was changed, otherwise press **2** to advance to **dR t . F** Data Format Submenu.

DATA FORMAT SUBMENU:

Preformatted data can be sent automatically or upon request from the controller. Use the Data Format Submenus to determine what data will be sent in this preformatted data string. Refer to the iSeries Communications Manual for more information about the data format. At least one of the following suboptions must be enabled and hence output data to the Serial Bus.

Note This menu is applicable for Continuous Mode of RS-232 communication.

Press **37**) Display advances to **5**ERE Alarm Status Submenu.

ALARM STATUS SUBMENU:

Includes Alarm Status bytes in the data string.

- Press **38**) Display flashes previous selection for "Status" (alarm status).
- Press **3**9) Scroll through the available selections: NO, YES.

40) Display shows **5** E **R** d stored message momentarily and then advances to **R** d **N** C only, if it was changed, otherwise press **O** to advance to **R** d **N** C Reading Submenu.

MAIN READING SUBMENU:

Includes Main Reading in the data string.

- Press **1** Display flashes previous selection for "Reading".
- Press **42**) Scroll through the available selections: NO, YES.
- Press **43**) Display shows **5** E R d stored message momentarily and then advances to **PERK** only, if it was changed, otherwise press **2** to advance to **PERK** Peak Submenu.

PEAK VALUE SUBMENU:

Includes Peak Value in the data string.

- Press **44**) Display flashes previous selection for **PERK** Submenu.
- Press **45**) Scroll through the available selections: NO, YES.

Press **46**) Display shows **5ERd** stored message momentarily and then advances to **VALS** only, it was changed, otherwise press **2** to advance to **VALS** Valley Submenu.

VALLEY VALUE SUBMENU:

Includes Valley Value in the data string.

- Press **47**) Display flashes previous selection for "Valley".
- Press **48**) Scroll through the available selections: NO, YES.
- Press **49**) Display shows **5** E **R** d stored message momentarily and then advances to **UN IE** only, if it was changed, otherwise press **2** to advance to **UN IE** Temperature Unit Submenu.

TEMPERATURE UNIT SUBMENU:

Includes a byte in the data string to indicate whether reading is in Celsius or Fahrenheit.

- Press **9 50)** Display flashes previous selection for **UN TE**.
- Press **51**) Scroll through the available selections: NO, YES.

 Press Image: Stand Stan

ADDRESS SETUP SUBMENU:

Note This menu is applicable to the RS-485 Option only.

Press **3** Display advances to "Address Value" (0000 to 0199) Submenu.

ADDRESS VALUE SUBMENU:

Press **3 54**) Display flashes 1st digit of previously stored Address Value.

Press O & O 55) Press O and O to enter new "Address Value".

Press **O 56**) Display shows **5** E **R d** stored message momentarily and then advances to **E R . E f** only, if it was changed, otherwise press **O** to advance to **E R . E f** Transmit Time Interval Submenu.

TRANSMIT TIME INTERVAL SUBMENU:

This menu is applicable if "Continuous" Mode was selected in the "Data Flow Mode" Submenu and the device is configured as an RS-232C Standard device. Also, one or more options under the Data Format Submenu must be enabled.

Press **9 57**) Display advances to "Transmit Time Value" Submenu.

TRANSMIT TIME INTERVAL VALUE SUBMENU:

Determines the interval at which data will be emitted to the RS-232 Serial Bus when the instrument is in Continuous Data Flow Mode.

Press **9 58)** Display flashes 1st digit of previous "Transmit Time Value" in seconds.

Press **59**) Press **5** and **5** to enter new "Transmit Time Value", e.g. 0030 will send the <u>data every</u> 30 seconds in Continuous Mode.

Press **O 60)** Display shows **5ERD** stored message momentarily and then advances to **COLR** only, if it was changed, otherwise press **O** to advance to **COLR** Color Display Selection Menu.

For more details, refer to the Communication Manual available at the website listed in the cover page of this manual or on the CD-ROM enclosed with your shipment.

3.2.15 DISPLAY COLOR SELECTION

This submenu allows the user to select the color of the display.

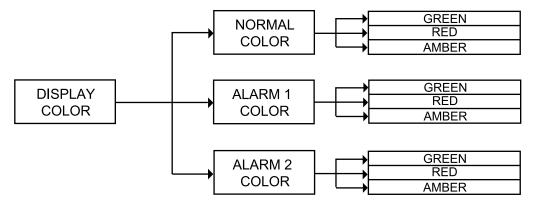


Figure 3.14 Flow Chart for Display Color Selection

ENTER DISPLAY COLOR SELECTION MENU:

- Press **()** 1) Press **()**, if necessary, until **(NFG** prompt appears.
- Press 2 2) Display advances to HPE Input Menu.
- Press **(a)** Press **(b)**, if necessary, until Display advances to **COLR** Display Color Selection Menu.
- Press **O 4**) Display advances to **H.C.L.R** Normal Color Submenu.

NORMAL COLOR DISPLAY SUBMENU:

Press 🖸	5) Display flashes the previous selection for "Normal Color".
Press \tag	6) Scroll through the available selections: GRN , RED or ROBR .
Press 🕗	7) Display shows 5도 Rd stored message momentarily and then
	advances to I.CLR only, if it was changed, otherwise press O to
	advance to J.C.L.R Alarm 1 Display Color Submenu.

The menu below allows the user to change the color of display when alarm is triggered.

ALARM 1 DISPLAY COLOR SUBMENU:

- Press O8) Display flashes previous selection for "Alarm 1 Color Display".
- Press O 9) Scroll through the available selections: CRN, REd or RADR.
- Press **1**(0) Display shows **5** E **R** d stored message momentarily and then advances to **2**.**C** L **R** only, if it was changed, otherwise press **2** to advance to **2**.**C** L **R** Alarm 2 Display Color Submenu.

ALARM 2 DISPLAY COLOR SUBMENU:

- 11) Display flashes previous selection for "Alarm 2 Color Display". Press **O** Press **O**
 - 12) Scroll through the available selections: **GRN**, **RE** or **R**
- Press
- 13) Display shows **5ERd** stored message momentarily and then momentarily shows the software version number, followed by RSE Reset, and then proceeds to the Run Mode.

IN ORDER TO DISPLAY ONE COLOR, SET THE SAME DISPLAY COLOR ON ALL THREE SUBMENUS ABOVE.

Note 🖙

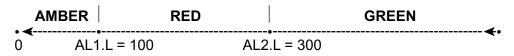
If user wants the Display to change color every time when both Alarm 1 and Alarm 2 are triggered, the Alarm values should be set in such a way that Alarm 1 value is always on the top of Alarm 2 value, otherwise value of Alarm 1 will overwrite value of Alarm 2 and Display Color would not change when Alarm 2 is triggered.

Example 1:

Output 1 & Output 2 = SSR

Alarm Setup: Absolute, Above, Alarm 2 HI Value "ALR.H" = 200, Alarm 1 HI Value "ALR.H" = 400"Color Display" Setup: Normal Color "N.CLR" = Green, Alarm 1 Color

"1.CLR" = Amber, Alarm 2 Color "2.CLR" = Red


Display Colors change sequences:

•>	GREEN		RED			AMBER	
0		AL2.H = 20			1 = 400	,	

Example 2:

Output <u>1 & Output 2</u> = Pulse Alarm Setup: Absolute, Below, Alarm 2 Low Value "ALR.L" = 300, Alarm 1 Low Value "ALR.L" = 100 Color Display Setup: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display Colors change sequences:

Example 3: <u>Output 1</u> = Analog Output (Alarm 1 disabled), Setpoint 1 = 300, <u>Output 2</u> = Relay, Setpoint 2 = 200 <u>Alarm 1 & 2 Setup</u>: Deviation, Band, "ALR.H" = 10 <u>Color Display Setup</u>: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display Colors change sequences:

Alarm 1 is designed to monitor the Process Value around the Setpoint 1. Alarm 2 is designed to monitor the Process Value around the Setpoint 2. If Analog Output Option board is installed (Alarm 1 is disabled), only Alarm 2 is active and only two colors are available.

Example 4:

<u>Output 1</u> = Relay, Setpoint 1 = 200 <u>Output 2</u> = Relay, Setpoint 2 = 200 <u>Alarm 1 Setup</u>: Deviation, Band, "ALR.H" = 20 <u>Alarm 2 Setup</u>: Deviation, Hi/Low, "ALR.H" = 10, "ALR.L" = 5 <u>Color Display Setup</u>: "N.CLR" = Green, "1.CLR" = Amber, "2.CLR" = Red

Display colors change sequences:

AMBER •►		_			AMBER	
0	180			220		-

Reset: The instrument automatically resets after the last menu of the Configuration Mode has been entered. After the instrument resets, it advances to the Run Mode.

PART 4 SPECIFICATIONS

Accuracy ±0.5°C temp; 0.03% reading process Resolution 1°/0.1°; 10 µV process **Temperature Stability** 1) RTD: 0.04°C/°C 2) TC @ 25°C (77°F): 0.05°C/°C - Cold Junction Compensation 3) Process: 50 ppm/°C NMRR 60 dB CMRR 120 dB A/D Conversion Dual slope **Reading Rate** 3 samples per second **Digital Filter** Programmable Display 4-digit or 6-digit, 7-segment LED 57.2 mm (2.25") or 101.6mm (4.00") red, green and amber programmable colors for process variable, set point and temperature units Warm up to Rated Accuracy 60 min. INPUT Input Types Thermocouple, RTD, Analog Voltage, Analog Current Thermocouple Type (ITS 90) J, K, T, E, R, S, B, C, N, L **Thermocouple Lead Resistance** 100 ohm max **RTD Input (ITS 68)** 100/500/1000 Ω Pť sensor, 2-, 3- or 4-wire; 0.00385 or 0.00392 curve **Voltage Input** 0 to 100 mV, 0 to 1 V, 0 to 10 Vdc Input Impedance 10 M Ω for 100 mV 1 M Ω for 1 or 10 Vdc

Current Input

0 to 20 mA (5 ohm load)

Single-ended Polarity Unipolar Step Response 0.7 sec for 99.9% **Decimal Selection** None, 0.1 for temperature None, 0.1, 0.01 or 0.001 for process Setpoint Adjustment -1999 to 9999 counts Span Adjustment 0.001 to 9999 counts Offset Adjustment -1999 to +9999 CONTROL Action Reverse (heat) or direct (cool) Modes Time and Amplitude Proportional Control Modes; selectable Manual or Auto PID, Proportional, Proportional with Integral, Proportional with Derivative with Anti-reset Windup and ON/OFF Rate 0 to 399.9 seconds Reset 0 to 3999 seconds Cycle Time 1 to 199 seconds; set to 0 for ON/OFF operation Gain 0.5 to 100% of span; Setpoints 1 or 2 Damping 0000 to 0008 Soak 00.00 to 99.59 (HH:MM), or OFF Ramp to Setpoint 00.00 to 99.59 (HH:MM), or OFF Auto Tune Operator initiated from front panel

Configuration

CONTROL OUTPUT 1 & 2 Relay

250 Vac or 30 Vdc @ 3 A (Resistive Load); configurable for on/off, PID and Ramp and Soak **Output 1:** SPDT type, can be configured as Alarm 1 output **Output 2:** SPDT type, can be configured as Alarm 2 output **SSR**

20-265 Vac @ 0.05-0.5 A (Resistive Load); continuous **DC Pulse**

Non-Isolated; 10 Vdc @ 20 mA Analog Output (Output 1 only) Non-Isolated, Proportional 0 to 10 Vdc or 0 to 20 mA; 500 Ω max

COMMUNICATIONS (optional) RS-232 or RS-485 programmable

300 to 19.2 K baud; complete programmable setup capability; program to transmit current display, alarm status, Peak and Valley value. **RS-485**

Addressable from 0 to 199 Connection

Screw terminals

ALARM 1 & 2 (programmable):

Type Same as Output 1 & 2

Operation

High/low, above/below, band, latch/unlatch, normally open/normally closed and process/deviation; front panel configurations

ANALOG OUTPUT (programmable)

Non-Isolated, Retransmission 0 to 10 Vdc or 0 to 20 mA, 500 Ω max (Output 1 only). Accuracy is <u>+</u> 1% of FS when following conditions are satisfied.

- 1) Input is not scaled below 1% of Input FS.
- 2) Analog Output is not scaled below 3% of Output FS.

EXCITATION (optional in place of Communication) 24 Vdc @ 25 mA

24 Vac @ 25 mA

INSULATION Power to Input/Output

2500 Vac per 1 minute test (RS-232/485, Input or Output) Between Inputs 500 Vac per 1 minute test Approvals See CE Approval Section

GENERAL

Power 100-240 Vac +/-10%, 50/60 Hz 22.5 W Fuse 4A, 250V, GFE, 5x20mm Environmental Conditions 0 to 40°C (32 to 104°F), 90% RH non-condensing Installation Category II per EN61010-1 Equipment Class l per EN61010-1 **Pollution Degree** 2 per EN61010-1 Protection NEMA-4x (IP65) front bezel **Dimensions and Panel Cutout** Refer to Quickstart Specifications. Weight Refer to Quickstart Specifications.

Table 4.1 Input Properties

TC	Input Type	Range	Accuracy*
	Iron-Constantan	-210 to 760°C	0.4°C
J		-346 to 1400°F	0.7°F
		-270 to -160°C	1.0°C
K	CHROMEGA [®] -	-160 to 1372°C	0.4°C
I I I	ALOMEGA®	-454 to -256°F	1.8°F
		-256 to 2502°F	0.7°F
		-270 to -190°C	1.0°C
T	Copper-Constantan	-190 to 400°C	0.4°C
T		-454 to -310°F	1.8°F
		-310 to 752°F	0.7°F
		-270 to -220°C	1.0°C
E	CHROMEGA-	-220 to 1000°C	0.4°C
	Constantan	-454 to -364°F	1.8°F
		-364 to 1832°F	0.7°F
		-50 to 40°C	1.0°C
R	Pt/13%Rh-Pt	40 to 1788°C	0.5°C
R		-58 to 104°F	1.8°F
		104 to 3250°F	0.9°F
		-50 to 100°C	1.0°C
S	Pt/10%Rh-Pt	100 to 1768°C	0.5°C
3		-58 to 212°F	1.8°F
		212 to 3214°F	0.9°F
		200 to 640°C	1.0°C
B	30%Rh-Pt/	640 to 1820°C	0.5°C
D	6%Rh-Pt	212 to 1184°F	1.8°F
		1184 to 3308°F	0.9°F
C	5%Re-W/	0 to 2354°C	0.4°C
	26%Re-W	32 to 4253°F	0.7°F
		-250 to -100°C	1.0°C
N	Nicrosil-Nisil	-100 to 1300°C	0.4°C
		-418 to -148°F	1.8°F
		-148 to 2372°F	0.7°F
	J	-200 to 900°C	0.4°C
	DIN	-328 to 1652°F	0.7°F
RTD	Pt, 0.00385, 100 Ω,	200 to 900°C	0.4°C
	500 Ω, 1000 Ω	-328 to 1652°F	0.7°F
RTD	Pt, 0.00392, 100 Ω,	-200 to 850°C	0.4°C
ΠΙΟ	500 Ω, 1000 Ω	-328 to 1562°F	0.7°F
PROCESS	Voltage	0 to 100 mV, 0 to 1 V,	0.03% rdg
	-	0 to 10 Vdc	0.03% rdg
PROCESS	Current	0 to 20 mA, 4 to 20 mA	0.03% rdg

PART 5 FACTORY PRESET VALUES

Table 5.1 Factory preset value

MENU ITEMS	FACTORY PRESET VALUES	NOTES
Set Point 1 (SP1)	000.0	
Set Point 2 (SP2)	000.0	
Input:	·	
Input Type (INPT)	TC, type K	
Reading Configuration (RDG):		
Decimal Point (DEC.P)	FFF.F	
Temperature unit (TEMP)	°F	
Filter value (FLTR)	0004	
Alarm 1 & 2:		
Alarm 1 (ALR1), Alarm 2 (ALR2)	Disable (DSBL)	
Absolute/Deviation (ABSO/DEV)	Absolute (ABSO)	
Latch/Unlatch (LTCH/UNLT)	Unlatch (UNLT)	
Contact Closure (CT.CL)	Normally Open (N.O.)	
Active (ACTV)	Above (ABOV)	
Alarm At Power On (A.P.ON)	Disable (DSBL)	Alarm 1 only
Alarm Low (ALR.L)	-100.0	
Alarm High (ALR.H)	400.0	
LOOP:		-
Loop Break Time (LOOP)	Disable (DSBL)	
Loop Value (B.TIM)	00:59	
Reading Adjust Value (R.ADJ)	000.0	
ANALOG OUTPUT (Retransmission	on):	
Analog Output (ANLG)	Enabled (ENBL)	
Current/Voltage (CURR/VOLT)	Voltage (VOLT)	
Scale and Offset	Reading: 0 - 999.9 cts, Output: () - 10 V
OUTPUT 1 & 2:		
Self (SELF)	Disabled (DSBL)	Output 1 only
% Low Value (%LO)	0000	Output 1 only
% High Value (%HI)	0099	Output 1 only
Control Type (CTRL)	On/Off	
Action Type (ACTN)	Reverse (RVRS)	
Dead Band (DEAD)	020.0	
PID Auto (AUTO)	Disable (DSBL)	
Anti Integral (ANTI)	Disable (DSBL)	Output 1 only
Proportion Value (PROP)	020.0	
Reset Value (REST)	0180	Output 1 only
Rate Value (RATE)	0000	Output 1 only
Cycle Value (CYCL)	0007	
Damping Factor (DPNG)	0003	

MENU ITEMS	FACTORY PRESET VALUES	NOTES
Ramp & Soak (RAMP):		
Ramp (RAMP)	Disable (DSBL)	
Soak (SOAK)	Disable (DSBL)	
Ramp Value (RAMP)	00:00	
Soak Value (SOAK)	00:00	
ID:	-	
ID Value	0000	
Full ID (FULL)	Disable (DSBL)	
Set Point ID (ID.SP)	Disable (DSBL)	
Communication Parameters:		
Baud Rate (BAUD)	9600	
Parity (PRTY)	Odd	
Data bit (DATA)	7 bit	
Stop Bit	1 bit	
Modbus Protocol (M.BUS)	No	
Line Feed (LF)	No	
Echo (ECHO)	Yes	
Standard Interface (STND)	RS-232 (232C)	
Command Mode (MODE)	Command (CMD)	
Separation (SEPR)	Space (SPCE)	
Alarm Status (STAT)	No	
Reading (RDNG)	Yes	
Peak	No	
Valley (VALY)	No	
Units (UNIT)	No	
Multipoint Address (ADDR)	0001	
Transmit Time (TR.TM)	0016	
Display Color (COLR):		
Normal Color (N.CLR)	Green (GRN)	
Alarm 1 Color (1.CLR)	Red (RED)	
Alarm 2 Color (2.CLR)	Amber (AMBR)	

1-800-TIP-TEMP www.tiptemp.com

CE APPROVAL INFORMATION

1. Electromagnetic Compatibility (EMC)

This device conforms with requirements of EMC Directive 89/336/EEC, amended by 93/68/EEC. This instrument complies with the following EMC Immunity Standards as tested per EN 61326-2:1998 (Industrial Locations)

Phenomena	Test Specification	Basic Standard
Electrostatic Discharge	+/- 4 kV contact discharge +/- 8 kV air discharge	IEC 1000-4-2 Performance Criteria B
Radio Frequency electromagnetic field.	27 - 1000 MHz 3 V/m 80% AM (1 KHz)	IEC 1000-4-3 Performance Criteria A
Fast Transients	+/- 2 kV (ac mains) +/- 1 kV (dc, signal I/O) 5/50 ns Tr/Th, 5 KHz rep. freq.	IEC 1000-4-4 Performance Criteria B
Surge	+/- 1.0 kV AC Port L-L +/- 2.0 kV AC Port L-PE +/- 1.0 kV DC Port L-L +/- 2.0 kV DC Port L-PE	IEC 1000-4-5 Performance Criteria B
Radio Frequency conducted	0.15 - 80 MHz 3 Vrms 80% AM (1 KHz)	IEC 1000-4-6 Performance Criteria A

This instrument complies with the following EMC Emission Standards as tested per EN 61326-2:1998 (Class B equipment)

Phenomena	Frequency Range	Limits	Basic Standard
Radiated Emission	30-230 MHz 230-1000 MHz	30 dB_V/m at 10 m 37 dB_V/m at 10 m quasi peak	CISPR 22 Class B
Conducted Emission	0.15-0.5 MHz 0.5-5 MHz 5-30 MHz	66-56 dB_V quasi peak 56 dB_V quasi peak 60 dB_V quasi peak	CISPR 22 Class B

2.Safety

This device conforms with Low Voltage Directive 73/23/EEC, amended by 93/68/EEC. The following LVD requirements have been met to comply with EN 61010-1, 1993 (Electrical equipment for measurement, control and laboratory use)

1. Pollution Degree 2

2. Installation Category II

3. Class I Equipment (100-240 Vac Powered Units)

NOTES
